Homework Set \# 2 - Math 435 - Summer 2013

1. Suppose that we have a uniform thin tube (approximable by one space dimension) of liquid with some particles which are suspended in the liquid. If the liquid is flowing through the pipe uniformly at a constant rate $c(\mathrm{~m} / \mathrm{s})$, carrying with it the particles, and if we also take into account that the particles diffuse within the solution, derive the PDE for the concentration of the particles $u(x, t)$.
2. Suppose now that we have a motionless fluid in a tube, and again have particles suspended in that liquid. The particles move by diffusion AND sediment out of the solution at a fixed percentage rate v (in units $1 / \mathrm{s}-v$ is the fraction of particles that fall out of solution per second). Derive the PDE modeling the concentration of the particles $u(x, t)$.
3. Suppose that a uniform rod (approximable as one-dimensional) has a uniform heat source, so that the basic equation describing heat flow within the rod is

$$
u_{t}=\alpha^{2} u_{x x}+1
$$

for $0 \leq x \leq 1$. Suppose we fix the boundaries' temperatures so that at $x=0$ the rod is held at temperature 0 and at $x=1$ the rod is held at temperature 1 .
(a) Formulate the boundary conditions for the given problem.
(b) Write the boundary value problem (meaning the PDE and the boundary conditions) that describes the steady-state temperature of the rod.
(c) Use ODE techniques to solve the steady-state problem, if possible.
4. (a) What is a physical interpretation of the initial-boundary-value problem:

$$
\begin{aligned}
u_{t} & =\alpha^{2} u_{x x} \quad \text { for } 0 \leq x \leq 1, \quad 0<t<\infty \\
u(0, t) & =0 \\
u_{x}(1, t) & =1 \quad \text { for } 0<t<\infty \\
u(x, 0) & =\sin (\pi x) \quad \text { for } 0 \leq x \leq 1
\end{aligned}
$$

(b) Can the solution come to a steady state? [hint: try to find steady-state solutions]
(c) Answer (a) and (b) again, but with the boundary conditions

$$
\begin{aligned}
& u_{x}(0, t)=0 \\
& u_{x}(1, t)=0
\end{aligned} \quad \text { for } 0<t<\infty
$$

5. (a) What is a physical interpretation of the initial-boundary-value problem:

$$
\begin{array}{rlrl}
u_{t t} & =c^{2} u_{x x} \quad \text { for } 0 \leq x \leq 1, \quad 0<t<\infty \\
u(0, t) & =0 & & \\
u(1, t) & =\sin (t) & & \text { for } 0<t<\infty \\
u(x, 0) & =0 & & \\
u_{t}(x, 0) & =0 \quad \text { for } 0 \leq x \leq 1
\end{array}
$$

(b) Can the solution come to a steady state?
6. Section 1.5 Strauss, problem 5
7. Section 1.5, problem 6
8. What are the types of the following equations (elliptic, parabolic, or hyperbolic)?
(a) $u_{x x}-u_{x y}+2 u_{y}+u_{y y}-3 u_{y x}+4 u=0$
(b) $9 u_{x x}+6 u_{x y}+u_{y y}+u_{x}=0$
(c) $u_{x x}-4 u_{x y}+4 u_{y y}=0$
(d) $u_{x x}-4 u_{x y}-4 u_{y y}=0$
9. Section 1.6, Problem 2.
10. Use the rotational change of variables:

$$
\begin{aligned}
& x=\xi \cos \theta-\eta \sin \theta \\
& y=\xi \sin \theta+\eta \cos \theta
\end{aligned}
$$

or equivalently:

$$
\begin{aligned}
& \xi=x \cos \theta+y \sin \theta \\
& \eta=-x \sin \theta+y \cos \theta
\end{aligned}
$$

for some angle of rotation θ, to show that any equation of the form $a u_{x x}+a u_{y y}+b u=0$ is invariant under rotation (the form of the equation doesn't change under the change of variables!).

