1. Determine whether or not the following functions are solutions to the given PDE.
(a) $u_{x}-3 u_{y}=0, u(x, y)=\cos (y+3 x)$
(b) $u_{x}-3 u_{y}=0, u(x, y)=9 x^{2}+6 x y+y^{2}$
(c) $u_{x x}+u_{y y}=0, u(x, y)=x^{2}+y^{2}$
(d) $u_{x x}-2 u_{t}=0, u(t, x)=e^{t}\left[2 e^{\sqrt{2} x}+3 e^{-\sqrt{2} x}\right]$

Solutions:

(a) $u_{x}=-3 \sin (y+3 x)$ and $u_{y}=-\sin (y+3 x)$, so $u_{x}-3 u_{y}=0$ is true. YES.
(b) $u_{x}=18 x+6 y$ and $u_{y}=6 x+2 y$, so that $u_{x}-3 u_{y}=0$ holds. YES.
(c) $u_{x}=2 x$, so $u_{x x}=2$ and $u_{y}=2 y$ so $u_{y y}=2$. Thus $u_{x x}+u_{y y}=4 \neq 0$. NO.
(d) $u_{x}=e^{t}\left[2 \sqrt{2} e^{\sqrt{2} x}-3 \sqrt{2} e^{-\sqrt{2} x}\right]$, so that $u_{x x}=e^{t}\left[4 e^{\sqrt{2} x}+6 e^{-\sqrt{2} x}\right]$. Also $u_{t}=e^{t}\left[2 e^{\sqrt{2} x}+\right.$ $3 e^{-\sqrt{2} x}$, so $-2 u_{t}+u_{x x}=0$ holds. YES.
2. For the following PDE, determine whether or not they are linear (prove it!) and give their order.
(a) $u_{x}+x u_{y}=0$
(b) $u_{x}+u u_{y}=0$
(c) $u_{x}+u_{y}+1=0$
(d) $u_{x}+\left(u_{y}\right)^{2}=0$

Solutions:

(a) This PDE is order 1, because there are only first order derivatives, and is homogeneous. Expressed in operator notation in standard form, we have $L(u)=0$ where $L(u)=$ $u_{x}+x u_{y}$. Since
$L(u+v)=(u+v)_{x}+x(u+v)_{y}=u_{x}+v_{x}+x\left(u_{y}+v_{y}\right)=\left(u_{x}+x u_{y}\right)+\left(v_{x}+x v_{y}\right)=L(u)+L(v)$
and since

$$
L(c u)=(c u)_{x}+x(c u)_{y}=c u_{x}+x c u_{y}=c\left(u_{x}+x u_{y}\right)=c L(u)
$$

we have that the PDE is linear.
(b) This PDE is order 1. Expressed in operator notation in standard form, we have $L(u)=0$ where $L(u)=u_{x}+u u_{y}$, so it is also homogenous. Since

$$
\begin{aligned}
L(u+v) & =(u+v)_{x}+(u+v)(u+v)_{y}=u_{x}+v_{x}+(u+v)\left(u_{y}+v_{y}\right) \\
& =\left(u_{x}+u u_{y}\right)+v u_{y}+\left(v_{x}+v v_{y}\right)+u v_{y} \neq L(u)+L(v)
\end{aligned}
$$

so that the PDE is not linear.
(c) This PDE is order 1, because there are only first order derivatives. Expressed in operator notation in standard form, we have $L(u)=-1$ where $L(u)=u_{x}+u_{y}$, thus it is inhomogenous. Since

$$
L(u+v)=(u+v)_{x}+(u+v)_{y}=u_{x}+v_{x}+u_{y}+v_{y}=\left(u_{x}+u_{y}\right)+\left(v_{x}+v_{y}\right)=L(u)+L(v)
$$

and since

$$
L(c u)=(c u)_{x}+(c u)_{y}=c u_{x}+c u_{y}=c\left(u_{x}+u_{y}\right)=c L(u)
$$

we have that the PDE is linear (but inhomogeneous).
(d) This PDE is order 1, because there are only first order derivatives. Expressed in operator notation in standard form, we have $L(u)=0$ where $L(u)=u_{x}+\left(u_{y}\right)^{2}$, and is homogeneous. Since
$L(u+v)=(u+v)_{x}+\left((u+v)_{y}\right)^{2}=u_{x}+v_{x}+\left(u_{y}+v_{y}\right)^{2}=\left(u_{x}+\left(u_{y}\right)^{2}\right)+\left(v_{x}+\left(v_{y}\right)^{2}\right)+2 u_{y} v_{y} \neq L(u)+L(v)$
so that the PDE is not linear.
3. Find the general solution to the PDE $u_{y y}-u=0$.

Solution

We can solve this PDE as an ODE since the derivatives occur only in the variable y. We can try solutions of the form $u=e^{r y}$, and get that $r^{2}-1=0$ must be true. Thus $r= \pm 1$, and the general solution to the PDE is $u(x, y)=c_{1}(x) e^{y}+c_{2}(x) e^{-y}$.
4. Suppose you have a linear homogeneous PDE $L(u)=0$. Suppose that $u_{1}, u_{2}, \ldots, u_{n}$ are all solutions to the PDE. Show that any linear combination of those solutions is itself a solution to the PDE. Show that this is not true if the PDE is inhomogeneous. (Note: This is the superposition principle for PDE.)

Solution:

Since u_{i} satisfies $L\left(u_{i}\right)=0$ for all $i \in\{1, ; n\}$, since a linear combination of the u_{i} is $v=$ $c_{1} u_{1}+c_{2} u_{2}+\cdots+c_{n} u_{n}$ for some choice of constants c_{i}, and since the operator for our PDE is linear, we have

$$
L(v)=L\left(c_{1} u_{1}+\cdots+c_{n} u_{n}\right)=c_{1} L\left(u_{1}\right)+c_{2} L\left(u_{2}\right) \ldots c_{n} L\left(u_{n}\right)=c_{1} * 0+\cdots+c_{n} * 0=0 .
$$

Thus $L(v)=0$ also and the linear combination v is a solution of the PDE. Since v is an arbitrary linear combination of the u_{i} 's, ANY linear combination of the u_{i} 's is a solution to the PDE.

Now, if the PDE is inhomogeneous, so that $L(u)=g$ for some function g not identically zero, we will instead have

$$
L(v)=L\left(c_{1} u_{1}+\cdots+c_{n} u_{n}\right)=c_{1} L\left(u_{1}\right)+c_{2} L\left(u_{2}\right) \ldots c_{n} L\left(u_{n}\right)=c_{1} * g+\cdots+c_{n} * g \neq g .
$$

So, $L(v) \neq g$ and the linear combination is no longer solution to the PDE.
5. Verify that $u(x, y)=f(x) g(y)$ is a solution of the PDE $u u_{x y}=u_{x} u_{y}$ for all pairs of (differentiable) functions f and g of one variable.(Strauss Problem 11, Section 1.1)

Solution:

$$
\begin{aligned}
& u_{x}(x, y)=f^{\prime}(x) g(y) \\
& u_{y}(x, y)=f(x) g^{\prime}(y)
\end{aligned}
$$

Thus, $u_{x y}=f^{\prime}(x) g^{\prime}(y)$. Plugging into $u u_{x y}=u_{x} u_{y}$, we get:

$$
f(x) g(y) f^{\prime}(x) g^{\prime}(y)=f^{\prime}(x) g(y) f(x) g^{\prime}(y)
$$

which is a true statement! So the given u is in fact a solution of the PDE.
6. The following parts refer to the PDE $2 u_{t}+3 u_{x}=0$
(a) Find the general solution to the PDE. Check that it does in fact solve the PDE.
(b) If you add the condition that $u(x, 0)=\sin (x)$, what is $u(x, t)$?
(c) Sketch the solution $u(x, t)$ for $t=0,1,2$.
(d) What is the speed of propagation for the transport equation?

Solution:

(a) the general solution is $u(x, t)=f(2 x-3 t)$ or $u(x, t)=f\left(t-\frac{2}{3} x\right)$ or $u(x, t)=f\left(x-\frac{3}{2} t\right)$.
(b) If $u(x, 0)=\cos (x)$, then since $u(x, 0)=f(2 x)$ using the first general solution from part (a), we have

$$
f(2 x)=\cos (x)
$$

which implies that $f(x)=\cos (x / 2)$. Thus, $u(x, t)=f(2 x-3 t)=\cos \left(x-\frac{3}{2} t\right)$.

(c)
(d) note that the equation can be written as $\left.\langle 2,3\rangle \cdot<u_{t}, u_{x}\right\rangle=0$ so that the ODE for the characteristics is $\frac{d x}{d t}=\frac{3}{2}$, and thus the speed of propagation is $c=3 / 2$. Also, note in the graphs above that for every unit of time, the solution is shifted to the right by $3 / 2$ units in space. speed $=$ change in position/change in time $=(3 / 2) / 1$.
7. The following parts refer to the PDE $e^{x} u_{x}+u_{y}=0$.
(a) Find the characteristic curves for this PDE and sketch at least 4 of them in the same plane.
(b) Find the general solution to the PDE.
(c) If $u(0, y)=(y-2)^{2}$, find $u(x, y)$.
(d) Sketch $u(x, y)$ for $y=0,1,2$. Note that we no longer have the same behavior for the solutions "over time" as we had in the constant coefficient case.

Solution:

(a) We can find the characteristic curves by rewriting the equation as $u_{x}+e^{-x} u_{y}=0$, and setting $\frac{d y}{d x}=e^{-x}$. Solving this new ODE, we obtain $y=-e^{-x}+C$ which are the characteristic curves. Sketches of the characteristics are below for $C=0,10,25,50$.

(b) The general solution to the PDE is then $u(x, y)=f\left(y+e^{-x}\right)$.
(c) By part (b), $u(0, y)=f(y+1)$ and by the fact that $u(0, y)=(y-2)^{2}$, if we let $w=y+1$ we can see that we must have $f(w)=(w-3)^{2}$. Thus, the solution is $u(x, y)=\left(y+e^{-x}-3\right)^{2}$.

(d)

