Homework Set \# 1 - Math 435

1. Determine whether or not the following functions are solutions to the given PDE.
(a) $u_{x}-3 u_{y}=0, u(x, y)=\cos (y+3 x)$
(b) $u_{x}-3 u_{y}=0, u(x, y)=9 x^{2}+6 x y+y^{2}$
(c) $u_{x x}+u_{y y}=0, u(x, y)=x^{2}+y^{2}$
(d) $u_{x x}-2 u_{t}=0, u(t, x)=e^{t}\left[2 e^{\sqrt{2} x}+3 e^{-\sqrt{2} x}\right]$
2. For the following PDE, determine whether or not they are linear, homogenous, and give their order.
(a) $u_{x}+x u_{y}=0$
(b) $u_{x}+u u_{y}=0$
(c) $u_{x}+u_{y}+1=0$
(d) $u_{x}+\left(u_{y}\right)^{2}=0$
3. Find the general solution to the PDE $u_{y y}-u=0$.
4. Suppose you have a linear homogeneous PDE $L(u)=0$. Suppose that $u_{1}, u_{2}, \ldots, u_{n}$ are all solutions to the PDE. Show that any linear combination of those solutions is itself a solution to the PDE. Show that this is not true if the PDE is inhomogeneous. (Note: This is the superposition principle for PDE.)
5. Verify that $u(x, y)=f(x) g(y)$ is a solution of the PDE $u u_{x y}=u_{x} u_{y}$ for all pairs of (differentiable) functions f and g of one variable.(Strauss Problem 11, Section 1.1)
6. The following parts refer to the PDE $2 u_{t}+3 u_{x}=0$
(a) Find the general solution to the PDE. Check that it does in fact solve the PDE.
(b) If you add the condition that $u(x, 0)=\cos (x)$, what is $u(x, t)$?
(c) Sketch the solution $u(x, t)$ for $t=0,1,2$.
(d) What is the speed of propagation for the transport equation?
7. The following parts refer to the PDE $e^{x} u_{x}+u_{y}=0$.
(a) Find the characteristic curves for this PDE and sketch at least 4 of them in the same plane.
(b) Find the general solution to the PDE.
(c) If $u(0, y)=(y-2)^{2}$, find $u(x, y)$.
(d) Sketch $u(x, y)$ for $y=0,1,2$. Note that we no longer have the same behavior for the solutions "over time" as we had in the constant coefficient case.
