# Math 241 : Calculus and Analytic Geometry III Quiz \#6 (October 5, 2006) 

Name: (please print neatly) $\qquad$
Class Time: $\qquad$

1. The temperature at a point $(x, y)$ is $T(x, y)$, measured in degrees Celsius. A bug crawls so that its position after $t$ seconds is given by $x=\sqrt{1+t}, y=2+\frac{1}{3} t$. The temperature function satisfies $T_{x}(2,3)=4$, and $T_{y}(2,3)=3$. How fast is the temperature rising on the bug's path after 3 seconds?

We can use the chain rule to solve this problem, since:

$$
T_{t}=T_{x} x_{t}+T_{y} y_{t}
$$

The problem says that $x_{t}=.5(1+t)^{-.5}$ and $y_{t}=\frac{1}{3}$, so when $t=3, x_{t}=.25$ and $y_{t}=\frac{1}{3}$. Also since $t=3$ says that $x(3)=2$ and $y(3)=3$, We know from above that when $t=3, T_{x}=4$ and $T_{y}=3$. Plugging in:

$$
T_{t}=4 *(.25)+3 *\left(\frac{1}{3}\right)=2 \text { degrees Celsius per unit distance }
$$

2. Find the directional derivative of the function at the point $(3,4)$ in the direction of the vector $\langle 4,-3\rangle$ if

$$
f(x, y)=1+2 x \sqrt{y}
$$

The directional derivative is given by:

$$
D_{\vec{u}} f(3,4)=\nabla f(3,4) \cdot \vec{u}
$$

and $\vec{u}$ is a unit vector.
First find the unit vector $\vec{u}$ in the direction of our direction vector.

$$
|\langle 4,-3\rangle|=5 \quad \vec{u}=\langle 4 / 5,-3 / 5\rangle
$$

Also the gradient of $f$ is $\left\langle 2 \sqrt{y}, \frac{x}{\sqrt{y}}\right\rangle$, so the directional derivative at $(3,4)$ is

$$
\langle 4,3 / 2\rangle \cdot\langle 4 / 5,-3 / 5\rangle=16 / 5-9 / 10=23 / 10
$$

