MATH 241 - Multivariable Calculus - Final Equation Sheet

Vector Form of a line

$$
\vec{r}(t)=\vec{v} t+\vec{r}_{0}
$$

Equation of a Plane

$$
\vec{N} \cdot<x-x_{0}, y-y_{0}, z-z_{0}>=0
$$

Arclength of a Curve

For a curve $\vec{r}(t)$, the length of the curve for $a \leq t \leq b$ is

$$
L=\int_{a}^{b}\left|\vec{r}^{\prime}(t)\right| d t
$$

Curvature

The curvature of a curve $\vec{r}(t)$ at the point corresponding to time t is

$$
\kappa(t)=\frac{\left|\frac{d \vec{T}}{d t}\right|}{\left|\frac{d \vec{r}}{d t}\right|}
$$

The Discriminant

The following is the discriminant used in the second derivatives test, used for determining local maxima and minima of functions $f(x, y)$

$$
D=f_{x x}(x, y) f_{y y}(x, y)-\left(f_{x y}(x, y)\right)^{2}
$$

Coordinate Systems

Spherical Coordinates:
$x=\rho \cos \theta \sin \phi$
$y=\rho \sin \theta \sin \phi$
$z=\rho \cos \phi$
$\rho^{2}=x^{2}+y^{2}+z^{2}$
Cylindrical Coordinates:
$x=r \cos \theta$
$y=r \sin \theta$
$z=z$
$x^{2}+y^{2}=r^{2}$

