Solutions to Selected Problems:

Section 3.2

(1) Let $x(t)$ represent the AMOUNT of salt in the tank at any given time t. Then $\frac{d x}{d t}$ represents the rate of change of the amount of salt in time (units $\mathrm{kg} / \mathrm{min}$). According to the problem statement, the salt will be coming into the tank at a rate of $(8 L / \mathrm{min}) *(.05 \mathrm{~kg} / L)=0.4 \mathrm{~kg} / \mathrm{min}$ and is exiting at a rate of $\left(\frac{x}{100} \mathrm{~kg} / L\right) *(8 L / \mathrm{min})=\frac{8 x}{100} \mathrm{~kg} / \mathrm{min}$. Thus, the ODE for x is

$$
\frac{d x}{d t}=.4-\frac{8 x}{100}
$$

This ODE is linear, so we can take the integrating factor $e^{8 t / 100}$ and multiply through by it. Recognizing the product rule on the left hand side, we get

$$
\left(e^{8 t / 100} x\right)^{\prime}=.4 e^{8 t / 100}
$$

so that

$$
e^{.08 t} x=5 e^{8 t / 100}+c
$$

and $x(t)=5+c e^{-8 t / 100}$. Since $x(0)=.5$, we have $5+c=0.5$ or $c=-4.5$. Thus $x(t)=5-4.5 e^{-.08 t}$. Now to find when $x=0.02 * 100=2 k g$, we solve

$$
2=5-4.5 e^{-0.08 t}
$$

which results in

$$
5.07 \min =\frac{\ln (2)-\ln (3)}{-0.08}=t
$$

(5) If we have a solution that is $.001 \%$ chlorine, then we have by volume $\frac{.00001 \text { gal chlorine }}{\text { gal solution }}$. So, if again x is the amount of chlorine in the pool, measured in gallons, the incoming rate of chlorine is (.00001 gal Cl/ gal solution $) * 5($ gal solution $/ \mathrm{min})=.00005 \mathrm{gal} \mathrm{Cl} / \mathrm{min}$. The outgoing rate is $x / 10000$ (gal $\mathrm{Cl} /$ gal solution $) * 5$ gal solution $/ \mathrm{min}=\frac{5 x}{10000}$ gal $\mathrm{Cl} / \mathrm{min}$. So the ODE is

$$
\frac{d x}{d t}=.00005-.0005 x
$$

which is linear and can be solved via the integrating factor $e^{.0005 t}$.
We get

$$
x(t)=.1+c e^{-.0005 t}
$$

Applying the inital condition that the pool originally has $.01 \%$ chlorine, meaning it has $.0001 * 10000=$ 1 gallon of chlorine initally, gives us

$$
x(t)=.1+.9 e^{-.0005 t}
$$

Letting $t=60$ minutes gives us that $x(60)=.9734$ gallons of chlorine, which means its concentration in the pool is $.9734 / 10000$, which means its percentage in the pool is $100 *(.9734 / 10000)=$ $.9734 / 100=.009734 \%$.

3.3

(9) The average outside temp is $\frac{32+16}{2}=24$, so the model curve for M is

$$
M(t)=24-8 \cos (\pi t / 12)
$$

Here we assume that $t=0$ corresponds with 2 am and $t=12$ corresponds with 12 hours later at 2 pm . Since there is no heating/cooling system $(U(t)=0)$ and the ambient contributions to the temperature are not taken under consideration $(H(t)=0)$, we get the model for the change in temperature is

$$
\frac{d T}{d t}=K[24-8 \cos (\pi t / 12)-T]
$$

This is linear and can be solved to obtain

$$
T(t)=24-8\left(\frac{\cos (\pi t / 12)+\frac{p i}{12 K} \sin (\pi t / 12)}{1+\frac{\pi^{2}}{12^{2} K^{2}}}\right)+C e^{-K t}
$$

If the time constant for the building is 1 , then $K=1$. If the time constant is 5 , then $K=1 / 5$. We can then use this solution to find the maximum and minimum temperatures depending on K. The \max and min occur at critical points, or when $T^{\prime}=0$. Thus we look at

$$
T^{\prime}=\frac{8}{1+\pi^{2} /\left(12^{2} K^{2}\right)} *\left(-\frac{p i}{12} \sin (\pi t / 12)+\frac{\pi^{2}}{12^{2} K} \cos (\pi t / 12)\right)=0
$$

and we get

$$
\tan (\pi t / 12)=\frac{\pi}{12 K} \quad \rightarrow \quad t=\frac{12}{\pi} \arctan \left(\frac{\pi}{12 K}\right)
$$

If $K=1$ then a critical temp occurs for $t=.978$ radians which gives the minimum temp of $T=$ $16.26^{\circ} \mathrm{C}$. Since tangent has period π, another critical temp occurs at $t=.978+12$. Evaluating T at this time should give the maximum possible temperature. Note: you could use a graphing calculator to see the max and min temps... this is probably the simplest way to get them.
If $K=1 / 5$ then a critical temp occurs for $t=3.508$, which gives the minimum temp of $T=19.14^{\circ} C$. Again, the max temp should occur for $t=3.508+12$ (and should be lower than that of $K=1$ since this reflects a better insulated situation).
(13) We begin by remembering that $\frac{d T}{d t}=$ heat in - heat out. Heat is added to the tank via the solar panel. Heat is lost due to the difference between tank temp and outside temp. So the model is

$$
\frac{d T}{d t}=\left(2^{\circ} F / 1000 B t u\right) *(2000 B t u / h r)+(1 / 64)[80-T]
$$

or

$$
\frac{d T}{d t}=4+(1 / 64)[80-T]
$$

This equation is linear, and can be solved as such. The general solution is

$$
T(t)=64 * 4+80+C e^{-t / 64}=336+C e^{-t / 64}
$$

Applying the initial condition that $T(0)=110$, we find $C=-226$, so that the temp in the tank after 12 hr of sunlight is

$$
T(12)=336-226 e^{-12 / 64}
$$

