
Solutions to Selected Problems:

Section 3.2

(1) Let x(t) represent the AMOUNT of salt in the tank at any given time t. Then dx
dt represents the rate

of change of the amount of salt in time (units kg/min). According to the problem statement, the salt

will be coming into the tank at a rate of (8L/min) ∗ (.05kg/L) = 0.4kg/min and is exiting at a rate

of ( x
100

kg/L) ∗ (8L/min) = 8x
100

kg/min. Thus, the ODE for x is

dx

dt
= .4−

8x

100

This ODE is linear, so we can take the integrating factor e8t/100 and multiply through by it. Recog-

nizing the product rule on the left hand side, we get

(e8t/100x)′ = .4e8t/100

so that

e.08tx = 5e8t/100 + c

and x(t) = 5+ ce−8t/100. Since x(0) = .5, we have 5+ c = 0.5 or c = −4.5. Thus x(t) = 5− 4.5e−.08t.

Now to find when x = 0.02 ∗ 100 = 2kg, we solve

2 = 5− 4.5e−0.08t

which results in

5.07 min =
ln(2)− ln(3)

−0.08
= t .

(5) If we have a solution that is .001% chlorine, then we have by volume .00001 gal chlorine
gal solution

. So, if again x

is the amount of chlorine in the pool, measured in gallons, the incoming rate of chlorine is (.00001

gal Cl/ gal solution ) ∗ 5(gal solution/min) = .00005 gal Cl/min. The outgoing rate is x/10000 (gal

Cl/gal solution)∗5 gal solution/min = 5x
10000

gal Cl/min. So the ODE is

dx

dt
= .00005− .0005x

which is linear and can be solved via the integrating factor e.0005t.

We get

x(t) = .1 + ce−.0005t .

Applying the inital condition that the pool originally has .01% chlorine, meaning it has .0001∗10000 =

1 gallon of chlorine initally, gives us

x(t) = .1 + .9e−.0005t .

Letting t = 60 minutes gives us that x(60) = .9734 gallons of chlorine, which means its concentra-

tion in the pool is .9734/10000, which means its percentage in the pool is 100 ∗ (.9734/10000) =

.9734/100 = .009734%.



3.3

(9) The average outside temp is 32+16
2

= 24, so the model curve for M is

M(t) = 24− 8 cos(πt/12) .

Here we assume that t = 0 corresponds with 2 am and t = 12 corresponds with 12 hours later at 2 pm.

Since there is no heating/cooling system (U(t)=0) and the ambient contributions to the temperature

are not taken under consideration (H(t) = 0), we get the model for the change in temperature is

dT

dt
= K[24− 8 cos(πt/12)− T ] .

This is linear and can be solved to obtain

T (t) = 24− 8

(

cos(πt/12) + pi
12K sin(πt/12)

1 + π2

122K2

)

+ Ce−Kt .

If the time constant for the building is 1, then K = 1. If the time constant is 5, then K = 1/5. We

can then use this solution to find the maximum and minimum temperatures depending on K. The

max and min occur at critical points, or when T ′ = 0. Thus we look at

T ′ =
8

1 + π2/(122K2)
∗

(

−

pi

12
sin(πt/12) +

π2

122K
cos(πt/12)

)

= 0

and we get

tan(πt/12) =
π

12K
→ t =

12

π
arctan(

π

12K
) .

If K = 1 then a critical temp occurs for t = .978radians which gives the minimum temp of T =

16.26◦C. Since tangent has period π, another critical temp occurs at t = .978 + 12. Evaluating T at

this time should give the maximum possible temperature. Note: you could use a graphing calculator

to see the max and min temps... this is probably the simplest way to get them.

If K = 1/5 then a critical temp occurs for t = 3.508, which gives the minimum temp of T = 19.14◦C.

Again, the max temp should occur for t = 3.508 + 12 (and should be lower than that of K = 1 since

this reflects a better insulated situation).

(13) We begin by remembering that dT
dt = heat in - heat out. Heat is added to the tank via the solar

panel. Heat is lost due to the difference between tank temp and outside temp. So the model is

dT

dt
= (2◦F/1000Btu) ∗ (2000Btu/hr) + (1/64)[80− T ]

or
dT

dt
= 4 + (1/64)[80− T ] .

This equation is linear, and can be solved as such. The general solution is

T (t) = 64 ∗ 4 + 80 + Ce−t/64 = 336 + Ce−t/64 .

Applying the initial condition that T (0) = 110, we find C = −226, so that the temp in the tank after

12 hr of sunlight is

T (12) = 336− 226e−12/64


