Name: \qquad
Each problem is worth 15 points. Show all your work for full credit; numerical or graphical estimates are unacceptable unless specifically requested.

1. Find the derivative:
(a) $\frac{\mathrm{d}}{\mathrm{d} x} \ln \tan x$
(b) $\frac{\mathrm{d}}{\mathrm{d} x} \sin \sqrt{x}$
(c) $\frac{\mathrm{d}}{\mathrm{d} x} e^{x} \cot x$
(d) $\frac{\mathrm{d}}{\mathrm{d} x}(\csc x)^{x}$
2. Find y^{\prime} :

$$
\ln (x+y)=\sin (x y)
$$

3. Find the slope of the tangent line to the graph given (in polar coordinates) by $r=\theta^{2}$ at $\theta=\frac{\pi}{2}$.
4. State and prove the differentiation rule for $y=\sec ^{-1} x$.
5. Use local linear approximation to estimate $\ln 3$. Use a graph to show whether your approximation is an overestimate or an underestimate.
6. Suppose two boats are sailing near each other. Boat A is 10 miles south and 2 miles west of boat B . Boat A is traveling east at 20 mph , and boat B is traveling north at 5 mph . Determine whether the boats are getting closer together or further apart, and how quickly.
7. Find the global minimum and global maximum of $f(x)=x^{3}-12 x$ on $[0,4]$.
