1.7: Parametric Curves

- Sketch Curves
- Find Cartesian Equations
- Find Initial points and terminal points
- Find parametric equations for a given curve
2.1: Tangents and Velocities
- Identify, graph, and find approximate equations for tangent lines
- Approximate instantaneous rates of change
2.2: Limits
- Estimate graphically and numerically
- Be able to explain what $\lim _{x \rightarrow a} f(x)=L$ means
- Be able to show that a limit DNE numerically
- Graphical and numerical estimates for one-sided limits
- Know that $\lim _{x \rightarrow a} f(x)=L \Leftrightarrow \lim _{x \rightarrow a^{+}} f(x)=L=\lim _{x \rightarrow a^{-}} f(x)$
- Know that two sided limits are undefined when $f(x)$ is not defined on an interval around the limit point.

Appendix D: Formal Definition of Limits

- Be able to state the formal definition:

$$
\lim _{x \rightarrow a} f(x)=L \Leftrightarrow \forall \epsilon>0 \exists \delta>0 \text { such that } 0<|x-a|<\delta \Rightarrow|f(x)-L|<\epsilon
$$

, where $f(x)$ is defined on (c, d) except possibly at a with $c<a<d$.

- Be able to give a specific δ for a given ϵ.
- Be able to use the $\epsilon-\delta$ definition to prove that the following types of functions have specified limits:
- linear functions
- constant functions
- power functions

2.3: Limit Laws

- Remember to check that the limit of each subexpression exists before applying any arithmetic limit laws
- Know laws for sums, multiples, products, quotients, powers, and roots of functions
- Know that $\lim _{x \rightarrow a} p(x)=p(a)$ for any polynomial $p(x)$
- $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)$ if $f(x)=g(x)$ for x near a
- Find limits of rational functions by factoring and canceling
- Finding limits by rationalizing the numerator
- Using 1-sided limits to prove that 2 -sided limits do not exist
- The Comparison Theorem
- The Squeeze Theorem

2.4: Continuity

- Know the definition of continuity: $f(x)$ is continuous at $a \Leftrightarrow \lim _{x \rightarrow a} f(x)=f(a)$
- Show functions are or are not continuous using the definition and the limit laws.
- Identify discontinuities on a graph (breaks, jumps, or gaps).
- Determine continuity using 1-sided limits for piecewise functions/absolute value functions
- Know the distinction between removable discontinuities and infinite/jump discontinuities
- Know the definition of left continuity and right continuity
- Continuity laws (continuity of $f g, f \pm g, f / g, c f$, etc.)
- Know how to find the intervals on which a function is continuous using continuity algebra
- Know the list of common continuous functions:
$-\operatorname{logs}$
- exponentials
- polynomials
- rational functions
- roots
- trigonometric functions
- inverse trigonometric functions
- Using continuity to find a limit
- Know the rule for continuity of a composition $f \circ g$: if $f(x)$ is continuous at b and $\lim _{x \rightarrow a} g(x)=b$, then $f \circ g(x)$ is continuous at a.
- The Intermediate Value Theorem
- Bisection
2.5: Infinite limits and limits and infinity
- Graphical and numerical estimation
- "Infinite Arithmetic"
- Limit laws for limits at infinity
- Comparison Theorem for infinite valued limits
- Definition of horizontal and vertical asymptotes using limits involving infinity
- Limits at infinity of rational functions
- Limits at infinity of root functions (rationalizing the numerator)

