Name:

\qquad
Each problem is worth 15 points. Show all your work for full credit; numerical or graphical estimates are unacceptable unless specifically requested.

1. For the curves with parametric equations:

$$
\begin{gathered}
\left\{\begin{array}{l}
x=\cos t \\
y=\sin ^{2} t
\end{array} \quad 0 \leq t \leq 2 \pi\right. \\
\left\{\begin{array}{l}
x=\sec t \\
y=-\tan ^{2} t
\end{array}-\frac{\pi}{2} \leq t \leq \frac{\pi}{2}\right.
\end{gathered}
$$

(a) Graph the curve. Show the direction in which the curve is traced out, and label any initial points and terminal points.
(b) Find a Cartesian equation for the curve.
(c) Explain the difference between the two curves.
2. Find the value of the limit:
(a)

$$
\lim _{x \rightarrow 4} \frac{\frac{1}{2}-\frac{1}{x-2}}{x-4}
$$

(b)

$$
\lim _{h \rightarrow 0} \frac{\sqrt{9+h}-3}{h}
$$

(c)

$$
\lim _{a \rightarrow-3} \frac{a^{3}+3 a^{2}+a+3}{a+3}
$$

3. Give a formula for a function $f(x)$ satisfying the following properties:
(a) $\lim _{x \rightarrow 0} f(x)$ DNE.
(b) $\lim _{x \rightarrow 0} 2 f(x)$ DNE.
(c) $\lim _{x \rightarrow 0} f(x)^{2}=1$.
(d) $\lim _{x \rightarrow 0}|f(x)|=1$.
4. Determine the intervals on which the function pictured below is continuous.
5. State the $\epsilon-\delta$ definition of the limit, and use the definition to prove that

$$
\lim _{x \rightarrow 2} 7-3 x=1
$$

Draw a graph and label what the variables ϵ, δ, L and a represent for the above limit.
6. Use limits to show that $f(x)=\frac{\cos x}{e^{x}}$ has a horizontal asymptote at $y=0$.
7. Approximate $\sqrt[3]{3}$ to using 5 iterations of bisection.

