Name: \qquad
The optimization problems are worth 50 points; each of the other problems is worth 25 points. Work at least one of the optimization problems and all of the remaining problems; you may work all twelve problems for extra credit. Numerical estimates are unacceptable unless specifically requested; for full credit you must show all your work and use the indicated methods.

1. (25 pts) Use the definition of the limit to show that

$$
\lim _{x \rightarrow-3}(-5 x+3)=18
$$

2. (25 pts) Find

$$
\lim _{x \rightarrow 0^{+}}\left(\ln x+\frac{1}{x}\right)
$$

3. (25 pts) Find

$$
\lim _{t \rightarrow 1} \frac{e^{3 t}-e^{3}}{e^{2 t}+e^{t}+1}
$$

4. (25 pts) Use the definition of continuity to determine where $f(x)$ is continuous, where

$$
f(x)= \begin{cases}x^{2}+5 & x>4 \\ -3 x+33 & x \leq 4\end{cases}
$$

5. (25 pts) Use the definition of the derivative to find

$$
\frac{\mathrm{d}}{\mathrm{~d} x} \frac{1}{\sqrt{x}}
$$

6. (25 pts) Sketch the graph of $f(x)$ by hand, where

$$
f(x)=x^{3}-3 x^{2}-45 x
$$

Show all intercepts, asymptotes, extrema, and inflection points.
7. (25 pts) Use the fact that

$$
\frac{\mathrm{d}}{\mathrm{~d} x} \csc x=-\csc x \cot x
$$

to prove that

$$
\frac{\mathrm{d}}{\mathrm{~d} x} \csc ^{-1} x=-\frac{1}{x \sqrt{x^{2}-1}}
$$

8. (25 pts) Find

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\csc ^{-1} x\right)^{(\csc x)}
$$

9. (25 pts) Approximate $\sqrt[4]{15}$ using only elementary arithmetic operations with each of the following methods:
(a) Local linear approximation
(b) Five iterations of bisection starting on the interval [1, 2]
(c) Five iterations of Newton's method starting with $x_{0}=2$
10. (25 pts) Find how quickly the surface area of a cube is increasing when its volume is increasing at a rate of $1 \frac{\mathrm{in}^{3}}{\mathrm{~s}}$.
11. (50 pts) Find the volume of the largest cylinder that can be contained inside a sphere of radius R.
12. (50 pts) Find the volume of the largest cone that can be contained inside a sphere of radius R.
