Name:

\qquad
Each problem is worth 15 or 20 points. Work at least four of the first five problems and both of the last two problems; you may work all seven problems for extra credit. Numerical estimates are unacceptable; for full credit you must show all your work and use the indicated methods.

1. (15 pts) Find the slope the tangent line to $r=\theta^{2}$ when $\theta=\frac{\pi}{4}$.
2. (15 pts) Find

$$
\frac{\mathrm{d}}{\mathrm{~d} x}(\ln x)^{(\sqrt[5]{x})}
$$

3. (15 pts) Use local linear approximation to approximate the value of $\sqrt[3]{30}$. Perform all arithmetic by hand, and use a graph to illustrate whether your approximation is an overestimate or an underestimate.
4. (15 pts) Find the equation for the tangent line to the curve with parametric equations

$$
\begin{aligned}
& x=\sqrt{t}-t \\
& y=e^{t}
\end{aligned}
$$

when $t=4$.
5. (15 pts) Find y^{\prime} for

$$
x^{2} \sin \left(y^{2}\right)=5 x y
$$

6. (20 pts) Suppose a circular platform elevator is located directly below a spotlight and casts a shadow on the floor below. The height of the spotlight is 21 meters, the platform is 5 meters across, and its shadow is 15 meters across. If the shadow's diameter is currently shrinking at a rate of $1 \mathrm{~m} / \mathrm{s}$, find the current height of the elevator, determine whether the elevator is moving up or down, and find its speed. (Hint: draw a cross-section of the elevator with its shadow and use similar triangles.)
7. (20 pts) The temperature T (in ${ }^{\circ} \mathrm{F}$) of a 12 " skillet over a gas flame is given as a function of the distance d (in inches) from the center of the skillet by

$$
T(d)=-0.2 d^{3}-1.5 d^{2}+14.4 d+200
$$

Find the maximum and minimum temperature of the skillet and where these temperatures occur.

