Name:

\qquad
Each problem is worth 15 points. Numerical estimates are unacceptable; for full credit you must show all your work and use the indicated methods.

1. Suppose the position of a particle after t seconds is given by $f(t)=t^{4}-4 t^{2}+1$. Determine when the particle is speeding up and when it is slowing down.
2. Find the equation for the tangent line to

$$
f(x)=\sin (x) \cos (x) e^{x}
$$

when $x=\frac{\pi}{4}$.
3. Use the differentation rules for $\sin x$ and $\cos x$ to prove the differentiation rule for $\cot x$
4. Use the definition of the derivative to find

$$
\frac{\mathrm{d}}{\mathrm{~d} x} \frac{1}{\sqrt{4 x+3}}
$$

5. Suppose the maximum height (in m) of a model rocket is given as a function of its liftoff velocity (in m/s) by

$$
H(v)=\frac{50 \sqrt[5]{x^{3}}}{\sqrt{x}}
$$

Find $T^{\prime}(1024)$. Give units and interpret your answer.
6. The functions f, f^{\prime}, and $f^{\prime \prime}$ are pictured below. Label each graph with the appropriate function. Justify your answer by identifying how sign, slope and concavity correspond between the graphs of the function and its derivatives.

