Name:

\qquad
Each problem is worth 15 points. Numerical estimates are unacceptable; for full credit you must show all your work and use the indicated methods.

1. Suppose the position of a particle after t seconds is given by $f(t)=t^{3}-3 t^{2}+2 t+1$. Determine when the particle is speeding up and when it is slowing down.
2. Find the equation for the highest horizontal tangent line to

$$
f(x)=x^{2} e^{x}
$$

3. Use the fact that $\frac{\mathrm{d}}{\mathrm{d} x} \sin x=\cos x$ and $\frac{\mathrm{d}}{\mathrm{d} x} \cos x=-\sin x$ to prove that $\frac{\mathrm{d}}{\mathrm{d} x} \tan x=\sec ^{2} x$.
4. Use the definition of the derivative to find

$$
\frac{\mathrm{d}}{\mathrm{~d} x} \frac{1}{(4 x+3)^{2}}
$$

5. Suppose the temperature (in ${ }^{\circ} \mathrm{C}$) of a point on an iron rod protruding from a kiln is given as a function of the distance (in cm) to the end by

$$
T(d)= \begin{cases}1500 & \text { if } 0 \leq x<16 \\ \frac{3000 \sqrt{x}}{\sqrt[4]{x^{3}}} & \text { if } x \geq 16\end{cases}
$$

Find $T^{\prime}(81)$. Give units and interpret your answer.
6. The functions f, f^{\prime}, and $f^{\prime \prime}$ are pictured below. Label each graph with the appropriate function. Justify your answer by identifying how sign, slope and concavity correspond between the graphs of the function and its derivatives.

