

Each problem is worth 15 points. Show all your work for full credit; numerical or graphical estimates are unacceptable unless specifically requested. Work at least seven problems; you may work an eighth for extra credit (if you complete more than eight, I will only grade the first eight).

1. Find the derivative:

(a)
$$\frac{d}{dx} [e^x + x^e + ex^e + xe^x]$$

(b)
$$\frac{d}{dx} \sqrt[5]{x^3}$$

(c) $\frac{d}{dx} \frac{\sin x}{x^4}$

(c)
$$\frac{\mathrm{d}}{\mathrm{d}x} \frac{\sin x}{x^4}$$

$$\frac{\mathrm{d}}{\mathrm{d}x} \frac{x^3 - 2x^2 - 20x + 15}{x + 4}$$

- (a) Using the definition of the derivative.
- (b) Using the quotient rule.

Check that your answers agree.

(a)
$$-41 | 1-2-20 | 5$$
 $-12 | 34 | 30 - 16$
 $1-6 | 1-6 | 1$
 $= d (x^2-6x+11-x+11) = 0$
 $= d (x^2-6x+11-x+11) = 0$
 $= lim (x+1)^2-6(x+1)+11-x+11 = 0$
 $= lim (x+1)^2-6x-6h+11 = 0$
 $= lim (x+1)^2-6x-6h+11 = 0$
 $= lim (x+1)-6x+11 = 0$
 $= lim (x+1)-6$

3. Differentiate:

$$\frac{\mathrm{d}}{\mathrm{d}x} \left[e^x \tan\left(x\right) \sqrt{x} \right]$$

4. State the product rule, and prove the product rule using the definition of the derivative.

Pfi lim Sexthackth)-Sugar

- = lin fexth/g(xth) fex)g(xth) + fex)g(xth) fex)g(x h > 6
- = him (f(xth) s(x) g(xyh) + f(x) g(xyh) g(x)
- = lim f(x+h)-f(x) lim g(x+h) + f(x) lim g(x+h)-g(x)
 has here
- (: product lan for himits)
 - = 5(x) lin g(x+2) + 5(x) g'(x)
- = F(k)g(k) +F(x)g(x)
- (: goz) diffable = g(x) cents),

5. State the differentiation rule for $f(x) = \cos x$, and prove this differentiation rule using the definition of the derivative. You may assume the following:

(i)
$$\lim_{h\to 0} \frac{\sin h}{h} = 1$$

(ii)
$$\lim_{h\to 0} \frac{\cos h - 1}{h} = 0$$

(iii)
$$\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$$

$$\frac{d}{dx}\cos x = \lim_{h \to 0} \frac{\cos(x+h) - \cos x}{h}$$

6. Use the differentiation rules for $\sin x$, $\cos x$, and the quotient rule to prove the differentiation rule for $\cot x$.

d cotx = d cosx = -smx(sinx)-cosx(cosx

= - (Sin 2x + cooc2x) = - (Sin 2x + cooc2x)

7. Find the equation for the tangent line to the graph of $f(x) = \sec x$ at the point (0,1).

$$\gamma - 1 = o(x - 0)$$

a white to a great

8. Let
$$f(x) = x^4 + 4x^3$$
.

- (a) Find the equation for the tangent line to the graph of f(x) at the point (2,48)
- (b) There is a tangent line to the graph of f(x) at a point $x \neq 2$ that intersects the graph a second time at (2,48). Find the equation of this tangent line.

9. Suppose the position of a particle on the y-axis at time t is given by

$$D(t) = 2t^3 - 45t^2 + 300t$$

Determine when the particle is speeding up and when it is slowing down.

$$D'(t) = 6t^{2} - 90t + 300$$

$$= 6(t^{2} - 15t + 50)$$

$$= 6(t - 5)(t - 10) + 50$$

10. Suppose the area (in m^2) inside a mushroom ring t years after germination of a spore is given by $A(t) = \pi \left(\frac{100t}{10+t}\right)^2$. Find A(5) and A'(5). Give units and interpret your answer.

= 10,000
$$\pi$$
 (20t² + 200t) = 200,000 π t (4+10) π (4+10) π (4+10) π (4+10) π (5) = 10,000 π t (6+10) π (5) π (5) = 10,000 π t (5) π (1) π (6) π (7) π (7) π (8) = 10,000 π (9) π (10) π (10

After five years, the mush room ring has an area of 3490-7 m² and is graving at a rate of arm of