Name:

\qquad
Each problem is worth 15 points. Show all your work for full credit; numerical or graphical estimates are unacceptable unless specifically requested. Work at least seven problems; you may work an eighth for extra credit (if you complete more than eight, I will only grade the first eight).

1. Find the derivative:
(a) $\frac{\mathrm{d}}{\mathrm{d} x}\left[e^{x}+x^{e}+e x^{e}+x e^{x}\right]$
(b) $\frac{\mathrm{d}}{\mathrm{d} x} \sqrt[5]{x^{3}}$
(c) $\frac{\mathrm{d}}{\mathrm{d} x} \frac{\sin x}{x^{4}}$
2. Find

$$
\frac{\mathrm{d}}{\mathrm{~d} x} \frac{x^{3}-2 x^{2}-20 x+15}{x+4}
$$

(a) Using the definition of the derivative.
(b) Using the quotient rule.

Check that your answers agree.
3. Differentiate:

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left[e^{x} \tan (x) \sqrt{x}\right]
$$

4. State the product rule, and prove the product rule using the definition of the derivative.
5. State the differentiation rule for $f(x)=\cos x$, and prove this differentiation rule using the definition of the derivative. You may assume the following:
(i) $\lim _{h \rightarrow 0} \frac{\sin h}{h}=1$
(ii) $\lim _{h \rightarrow 0} \frac{\cos h-1}{h}=0$
(iii) $\cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta$
6. Use the differentiation rules for $\sin x, \cos x$, and the quotient rule to prove the differentiation rule for $\cot x$.
7. Find the equation for the tangent line to the graph of $f(x)=\sec x$ at the point $(0,1)$.
8. Let $f(x)=x^{4}+4 x^{3}$.
(a) Find the equation for the tangent line to the graph of $f(x)$ at the point $(2,48)$
(b) There is a tangent line to the graph of $f(x)$ at a point $x \neq 2$ that intersects the graph a second time at $(2,48)$. Find the equation of this tangent line.
9. Suppose the position of a particle on the y-axis at time t is given by

$$
D(t)=2 t^{3}-45 t^{2}+300 t
$$

Determine when the particle is speeding up and when it is slowing down.
10. Suppose the area (in m^{2}) inside a mushroom ring t years after germination of a spore is given by $A(t)=\pi\left(\frac{100 t}{10+t}\right)^{2}$. Find $A(5)$ and $A^{\prime}(5)$. Give units and interpret your answer.

