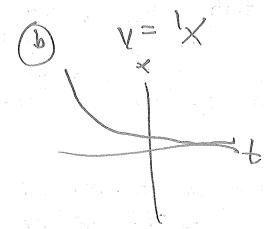
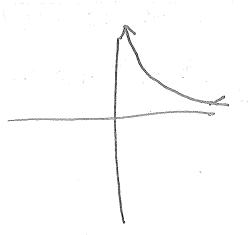

Name:

Each problem is worth 15 points. Show all your work for full credit; numerical or graphical estimates are unacceptable unless specifically requested. Several of the problems have a bonus component; you may attempt up to 10 points of bonus problems (if you complete more, I will only grade the first 10 points worth).

1. Graph each of the following sets of parametric equations by eliminating the parameter to get a Cartesian equation. Explain the difference between how the two parametric curves are traced out.

(a) 
$$\begin{cases} x = \tan t \\ y = \cot t \end{cases} (0 < t < \pi)$$


(b) 
$$\begin{cases} x = e^{-t} \\ y = e^{t} \end{cases}$$



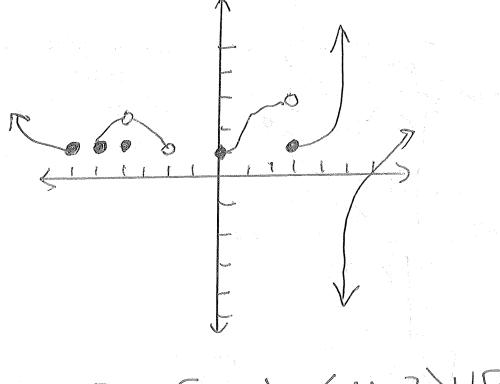

All possible x-alves

Report right half

traced out first






positive x only

4 PC

3. Use a graph to give an example of a pair of functions f(x) and g(x) such that  $\lim_{x\to a} f(x)$  and  $\lim_{x\to a} g(x)$  do not exist but  $\lim_{x\to a} \frac{f(x)}{g(x)}$  exists. For 5 bonus points, give formulas for f(x) and g(x).

Flet=g(x)= 1×1/x

5. Determine the intervals on which the graph of f(x) pictured below is continuous.



7. State the formal definition of the limit, and use the definition to show that

$$\lim_{x \to 2} (2x + 3) = 7$$

For 5 bonus points, draw a graph and label what the variables  $a, L, \delta$ , and  $\epsilon$  represent for the above limit.

Let 
$$\epsilon > 0$$
, set  $S = \epsilon / 2$ . Then

 $0 < |x - a| < S \Rightarrow$ 
 $-\epsilon / 2 < x - 2 < \epsilon / 2 \Rightarrow$ 
 $-\epsilon / 2 < x < \epsilon / 2 + 2 \Rightarrow$ 
 $-\epsilon / 2 < x < \epsilon / 2 + 2 \Rightarrow$ 
 $-\epsilon / 3 < \epsilon / 3 < \epsilon / 3 \Rightarrow$ 
 $-\epsilon / 3 < \epsilon / 3 < \epsilon / 3 \Rightarrow$ 
 $-\epsilon / 3 < \epsilon / 3 < \epsilon / 3 \Rightarrow$ 
 $-\epsilon / 3 < \epsilon / 3 < \epsilon / 3 \Rightarrow$ 
 $-\epsilon / 3 < \epsilon / 3 < \epsilon / 3 \Rightarrow$ 
 $-\epsilon / 3 < \epsilon / 3 < \epsilon / 3 \Rightarrow$ 
 $-\epsilon / 3 < \epsilon / 3 < \epsilon / 3 \Rightarrow$ 
 $-\epsilon / 3 < \epsilon / 3 < \epsilon / 3 \Rightarrow$ 
 $-\epsilon / 3 < \epsilon / 3 < \epsilon / 3 \Rightarrow$ 
 $-\epsilon / 3 < \epsilon / 3 < \epsilon / 3 \Rightarrow$ 
 $-\epsilon / 3 < \epsilon / 3 < \epsilon / 3 \Rightarrow$ 
 $-\epsilon / 3 < \epsilon / 3 < \epsilon / 3 \Rightarrow$ 
 $-\epsilon / 3 < \epsilon / 3 < \epsilon / 3 \Rightarrow$ 
 $-\epsilon / 3 < \epsilon / 3 < \epsilon / 3 \Rightarrow$ 
 $-\epsilon / 3 < \epsilon / 3 < \epsilon / 3 \Rightarrow$ 
 $-\epsilon / 3 < \epsilon / 3 < \epsilon / 3 \Rightarrow$ 
 $-\epsilon / 3 < \epsilon / 3 < \epsilon / 3 \Rightarrow$ 
 $-\epsilon / 3 < \epsilon / 3 < \epsilon / 3 \Rightarrow$ 
 $-\epsilon / 3 < \epsilon / 3 < \epsilon / 3 \Rightarrow$ 
 $-\epsilon / 3 < \epsilon / 3 < \epsilon / 3 \Rightarrow$ 
 $-\epsilon / 3 < \epsilon / 3 < \epsilon / 3 \Rightarrow$ 
 $-\epsilon / 3 < \epsilon / 3 < \epsilon / 3 \Rightarrow$ 
 $-\epsilon / 3 < \epsilon / 3 < \epsilon / 3 \Rightarrow$ 
 $-\epsilon / 3 < \epsilon / 3 < \epsilon / 3 \Rightarrow$ 
 $-\epsilon / 3 < \epsilon$