Name:

\qquad
Each problem is worth 15 points. Show all your work for full credit; numerical or graphical estimates are unacceptable unless specifically requested. Several of the problems have a bonus component; you may attempt up to 10 points of bonus problems (if you complete more, I will only grade the first 10 points worth).

1. Graph each of the following sets of parametric equations by eliminating the parameter to get a Cartesian equation. Explain the difference between how the two parametric curves are traced out.
(a) $\left\{\begin{array}{l}x=\tan t \\ y=\cot t\end{array} \quad(0<t<\pi)\right.$
(b) $\left\{\begin{array}{l}x=e^{-t} \\ y=e^{t}\end{array}\right.$
2. Find at least two of the following limits (5 bonus points each for the other two):
(a) $\lim _{x \rightarrow 10} \frac{x^{2}+x-110}{x-10}$
(b) $\lim _{h \rightarrow 0} \frac{\sqrt{36+h}-6}{h}$
(c) $\lim _{h \rightarrow 0} \frac{(t+h)^{-1}-t^{-1}}{h}$
(d) $\lim _{x \rightarrow 7} \frac{x^{4}-12 x^{3}+45 x^{2}-74 x+28}{x-7}$
3. Use a graph to give an example of a pair of functions $f(x)$ and $g(x)$ such that $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ do not exist but $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$ exists. For 5 bonus points, give formulas for $f(x)$ and $g(x)$.
4. Show that

$$
\lim _{x \rightarrow 0}\left(x^{2} \sin \frac{\pi}{x}\right)=0
$$

State the limit law(s) you are using.
5. Determine the intervals on which the graph of $f(x)$ pictured below is continuous.
6. Find

$$
\lim _{x \rightarrow-\infty}\left[\frac{\sqrt{9 x^{6}-5}}{\sqrt[3]{8 x^{9}+2}}\right]
$$

7. State the formal definition of the limit, and use the definition to show that

$$
\lim _{x \rightarrow 2}(2 x+3)=7
$$

For 5 bonus points, draw a graph and label what the variables a, L, δ, and ϵ represent for the above limit.

