1. For the graph of $f(x)=x^{4}-12 x^{3}+36 x^{2}+4 x-12$, find the equation of the line that is tangent to the graph of $f(x)$ at two points. Use calculus and algebra to show that this tangent line is the only one that is tangent twice to the graph of $f(x)$. This means solving the equation

$$
\frac{f(b)-f(a)}{b-a}=f^{\prime}(b)=f^{\prime}(a)
$$

where a and b are the two distinct points of tangency. (Note that this can be written as three separate equations, namely

$$
\begin{gathered}
\frac{f(b)-f(a)}{b-a}=f^{\prime}(b) \\
\frac{f(b)-f(a)}{b-a}=f^{\prime}(a) \\
f^{\prime}(b)=f^{\prime}(a)
\end{gathered}
$$

Noting you may assume that $b-a \neq 0$, add the first two equations together, simplify and factor everything to get an expression for a in terms of b. Then substitute this expression for a into the right-hand side of the last equation and solve for b. Lastly, use your expression for a in terms of b to find a, and check that the tangent lines to $f(x)$ at $x=a$ and $x=b$ are the same.)

