You should work through this as you would an actual exam. Time yourself, and try to solve each problem alone without using your notes or your book.

1. Find

$$
\frac{\mathrm{d}}{\mathrm{~d} x} \sin e^{\sin x}
$$

2. Find an equation for the tangent line to the parametric equation

$$
\begin{aligned}
& x=2^{t} \\
& y=\tan t^{2}
\end{aligned}
$$

when $t=2$.
3. Find an equation for the tangent line to $r=\cos \theta$ when $(r, \theta)=(-1, \pi)$.
4. Find y^{\prime} if $x e^{y}=y \sin x$.
5. State and prove the differentiation rule for

$$
\frac{\mathrm{d}}{\mathrm{~d} x} \sec ^{-1} x
$$

6. Find

$$
\frac{\mathrm{d}}{\mathrm{~d} x} \ln \frac{x^{2}}{x+1}
$$

7. Find

$$
\frac{\mathrm{d}}{\mathrm{~d} x} \sqrt{x}^{\sqrt[3]{x}}
$$

8. Use local linear approximation to approximate $\sin 3$. Perform all arithmetic by hand.
9. A galley trapped in a whirlpool follows a path given in polar coordinates by $r=\frac{1}{\sqrt{\theta}}$, where the radius is measured in furlongs. Find how quickly the ship is moving toward the center of the whirlpool if it is half a furlong from the center and circles the vortex 6 times per minute.
10. The height of a weight attached to the end of a spring t seconds after release is given by $4-4 e^{-t} \cos t$. Find the maximum and minimum height of the weight.
