Name:
Each problem is worth the indicated number of points. Work five of the first six problems and one of the last two; you may solve one additional problem for extra credit (if you work all eight, I will only grade the first seven). Show all your work for full credit (excluding arithmetic); numerical or graphical estimates are unacceptable unless specifically requested.

1. (15 pts) Find the following derivatives:
(a) $\frac{\mathrm{d}}{\mathrm{d} x} e^{\tan x}$
(b) $\frac{\mathrm{d}}{\mathrm{d} x} \log _{5} x$
(c) $\frac{\mathrm{d}}{\mathrm{d} x}(\cos x)^{(\sin x)}$
(d) $\frac{\mathrm{d}}{\mathrm{d} x} \sqrt[4]{\tan x} \csc ^{-1} 3^{x}$
2. (15 pts) Find the slope of the tangent line to the graph of the parametric equation equation

$$
\left\{\begin{array}{l}
x=t^{2}-3 \\
y=2 t+2
\end{array}\right.
$$

when $t=4$
3. (15 pts) State the differentiation rule for $\cot ^{-1} x$, and prove this rule using implicit differentiation, trigonometric identities, and the fact that $\frac{\mathrm{d}}{\mathrm{d} x} \cot x=-\csc ^{2} x$.
4. (15 pts) Find the y^{\prime} if

$$
\tan (x+y)=\cot (x+y)
$$

5. (15 pts) Use local linear approximation to estimate $\tan 0.75$. Tell whether this is an underestimate or an overestimate, and explain why (hint: determine the concavity of the graph using a second derivative). For this problem only, you must show all arithmetic performed by hand, and you will receive no credit for any work done using a calculator. You may leave your final answer in the form of a fraction. (Hint: to find a in the linear approximation formula consider fractional multiples of π close to 0.75 that have easy to calculate values for $\tan a$. You may approximate π by 3.14.)
6. (15 pts) Find all global maxima and minima of

$$
f(x)=x^{5}-405 x
$$

on $[0,5]$.
7. (25 pts) Suppose a paper lantern hanging on a hook six feet above a porch is knocked loose by the wind. The lantern takes four seconds to fall to the porch at constant velocity, in which time it floats horizontally one foot closer to a two and a half foot tall chair placed four feet away from a point directly beneath the hook. Determine the length of the chair's shadow and how it is changing when the lantern is half-way down.
8. (25 pts) Determine the growth rate of the radius of a sphere when its surface area is increasing by $25 \mathrm{in}^{2} / \mathrm{min}$ and its radius is 4 in .

