Each problem is worth points. Show all your work for full credit (excluding arithmetic); numerical or graphical estimates are unacceptable unless specifically requested.

1. Find the following derivatives:

(a)
$$\frac{d}{dx}e^{\sqrt{x}}$$
 $e^{\sqrt{x}}$

(b)
$$\frac{d}{dx} \ln x$$

(c)
$$\frac{d}{dx} \frac{\sqrt{\cos x}}{\log_2 \cot x} = \frac{\varphi}{g}$$

$$f' = \frac{-\sin \chi}{2\sqrt{\cos x}} \quad g' = \frac{-\csc 2\chi}{\cot \chi \ln 2}$$

$$f'g - fg' = \frac{-\sin \chi}{2\sqrt{\cos \chi}} \quad dg_2 \cot \chi + \sqrt{\cos \chi} \csc 2\chi$$

$$g^2 = \frac{-\cos^2 \chi}{\cot \chi \ln 2}$$

$$(\log_2 \cot \chi)^2$$

2. Find where the slope of the tangent line to the graph of the polar equation

$$r = \sin \theta, 0 \le \theta \le 2\pi$$

is horizontal and where it is vertical.

$$X = \sin \theta \cos \theta$$

 $Y = \sin^2 \theta$

$$\partial = \frac{dx}{d\theta} = \cos^2\theta - \sin^2\theta$$

hari

3. State the differentiation rule for $\csc^{-1} x$, and prove this rule using implicit differentiation, trigonometric identities, and the fact that $\frac{d}{dx} \csc x = -\csc x \cot x$. (Note: when you need to take a square root, you may assume that the positive branch is correct without providing any additional justification.)

csc2x = cot2x +1 cotx = VCSCTX-7 cot(csc-1x)= ax (csuy = x) csc(csc-1x)

4. Find the
$$y'$$
 if

4. Find the y' if
$$(x+y)^3 = (x-y)^3$$

$$2^3 + 3 \times^2 y + 3 \times 2^2 + y^3 = 2$$

$$2^3 - 3 \times^2 y + 3 \times 2^2 - y^3$$

$$6x^{2}y + 2y^{3} = 0$$

$$(2xy + 6x^{2}y' + 6y^{2}y' = 0)$$

$$y' = \frac{-12xy}{6x^2+6y^2}$$

$$= -\frac{2xy}{x^2+y^2}$$

5. Use local linear approximation to estimate ⁴√250. Tell whether this is an underestimate or an overestimate, and explain why (hint: determine the concavity of the graph using a second derivative). For this problem only, you must show all arithmetic performed by hand, and you will receive no credit for any work done using a calculator. You may leave your final answer in the form of a fraction.

$$A = 256$$

$$f(x) = 40 \times = x^{1/4}$$

$$f'(x) = \frac{1}{4}x^{-3/4}$$

$$f'(x) = \frac{1}{4}(x^{-3})^{-3} = \frac{1}{256}$$

$$L(x) = f'(a)(x-a) + f(a)$$

$$= x - 256 + 4$$

$$= x - 256 + 4$$

$$= x - 256 + 4$$

6. Find all local and global maxima and minima of

$$f(x) = 3x^4 - 4x^3 - 36x^2$$

on [-2, 2].

$$f'(x) = 12x^{3} - 12x^{2} - 72x$$

$$= 12x(x^{2} - x - 6)$$

$$= 12x(x - 3)(x + 2)$$

$$x = -2 \cdot 0 \cdot 3$$

$$F(-2) = -64$$

 $F(d) = 0$ gmax
 $F(2) = -128$ gmin

O)

MF- (2)

6 = 3 L

4713

16/28/

4

7. Determine the radius of a cylinder when its volume is growing by 50in³/hr and its surface area is growing by 20in²/min, assuming its height and diameter are always equal.

$$V = \pi r^{2}h$$

$$A = 2\pi rh + 2\pi r^{2}$$

$$V' = 2\pi r^{3}$$

$$A = 4\pi r^{2} + 2\pi r^{2}$$

$$V' = 6\pi r^{2}r'$$

$$A' = 12\pi rr'$$

$$A' = 12\pi rr'$$

$$V' = 6\pi r^{2}r'$$

$$A' = 12\pi rr'$$

$$V' = 6\pi r^{2}r'$$

$$V' = 6\pi r^{$$