You should work through this as you would an actual exam. Time yourself, and try to solve each problem alone without using your notes or your book.

1. The time S at which sunrise occurs on the first day of the month (in hours after midnight) is given as a function of the number of months t since January 1 in the table below. Approximate $S^{\prime}(2)$. Give units and interpret your answer.

0	7.76
1	7.6
2	7.001
3	6.37
4	5.72
5	5.33
6	5.37
7	5.7
8	6.1
9	6.5
10	6.95
11	7.45

2. Approximate the slope to the tangent line of $y=e^{\cos x}$ at $x=\frac{\pi}{2}$, and use your approximation to find an equation for the tangent line.
3. Differentiate $f(x)=\sqrt{5 x+1}+x^{2}$ using the definition of the derivative.
4. Show that $f(x)=|x|$ is differentiable on $(-\infty, 0) \cup(0, \infty)$ but not at 0 .
5. Graph a possible antiderivative $F(x)$ of the function $f(x)$ pictured below. Tell where $F(x)$ is increasing, decreasing, concave up, and concave down.

6. Find

$$
\frac{\mathrm{d}}{\mathrm{~d} x} \frac{\sqrt{x} \sqrt[3]{x}}{x^{4}}
$$

7. If the total percentage of proteins in a bowl of egg whites that has been denatured after t minutes of whipping is given by $E(t)=\frac{100 e^{t}}{e^{t}+99}$, determine how quickly the proteins are breaking down after 3 minutes.
8. Suppose at time $t=0$ a particle P located at $(15,30)$ in the (x, y) plane is moving straight downward with horizontal acceleration $-30 \mathrm{~m} / \mathrm{s}^{2}$ and vertical acceleration $55 \mathrm{~m} / \mathrm{s}^{2}$. If the rectangle with opposite vertices at P and the origin is shrinking at a rate of $75 \mathrm{~m}^{2} / \mathrm{s}$, determine whether the shrinkage of the rectangle is speeding up or slowing down.
9. Find

$$
\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}} \tan x
$$

10. Find

$$
\frac{\mathrm{d}}{\mathrm{~d} q}\left[q^{e}+e^{q}+e q+q e+q+e\right]
$$

11. Use the definition of the derivative to find

$$
\frac{\mathrm{d}}{\mathrm{~d} x} \frac{x^{4}-5 x^{2}+2}{x+1}
$$

Check your answer using the quotient rule.

