Name: \qquad
Each problem is worth 15 points. Show all your work for full credit; numerical or graphical estimates are unacceptable unless specifically requested.

1. Graph each of the following sets of parametric equations:
(a) $\left\{\begin{array}{l}x=\sec t \\ y=\tan ^{2} t\end{array} \quad\left(-\frac{\pi}{2} \leq t \leq \frac{\pi}{2}\right)\right.$
(b) $\left\{\begin{array}{l}x=e^{-t} \\ y=e^{-2 t}-1\end{array}\right.$
2. For the function $f(x)=\frac{x^{4}-16}{x^{2}+3 x-10}$,
(a) Find $\lim _{x \rightarrow 2} f(x)$ using the limit laws.
(b) Check your answer from part 2a by approximating the limit with a table of values.
3. For the functions $f(x)=\frac{2|x|}{x}+2$ and $g(x)=3-\frac{3|x|}{x}$, find the value of the limit or explain why it does not exist. For parts 3a, 3b, 3d, and 3e, you may use a graph to find the value of the limit.
(a) $\lim _{x \rightarrow 0^{+}} f(x)$
(b) $\lim _{x \rightarrow 0^{-}} f(x)$
(c) $\lim _{x \rightarrow 0} f(x)$
(d) $\lim _{x \rightarrow 0^{+}} g(x)$
(e) $\lim _{x \rightarrow 0^{-}} g(x)$
(f) $\lim _{x \rightarrow 0} g(x)$
(g) $\lim _{x \rightarrow 0^{+}}(f+g)(x)$
(h) $\lim _{x \rightarrow 0^{-}}(f+g)(x)$
(i) $\lim _{x \rightarrow 0}(f+g)(x)$
(j) $\lim _{x \rightarrow 0^{+}}(f g)(x)$
(k) $\lim _{x \rightarrow 0^{-}}(f g)(x)$
(l) $\lim _{x \rightarrow 0}(f g)(x)$
4. Show that

$$
\lim _{x \rightarrow 0} \sin \left(\frac{\pi}{x}\right) \sin \left(\frac{x}{\pi}\right)=0
$$

5. For the function $f(x)$ and each of the points a listed below, determine whether $f(x)$ is continuous at $x=a$ and explain why:

$$
f(x)=\left\{\begin{array}{lll}
\cos \left(\frac{\pi}{x}\right) & \text { if } & x<-1 \\
\frac{1}{x} & \text { if } & -1 \leq x \leq 1 \\
\sin \left(\frac{\pi}{x}\right) & \text { if } & x>1
\end{array}\right.
$$

(a) $a=-2$
(b) $a=-1$
(c) $a=0$
(d) $a=1$
(e) $a=2$
6. Find

$$
\lim _{x \rightarrow \infty} \frac{4 x^{3}-7 x}{\sqrt{16 x^{6}+14}}
$$

7. State the formal definition of the limit, and use the definition to prove that

$$
\lim _{x \rightarrow-3}(-3 x-3)=6
$$

Illustrate your proof with a diagram showing $f(x), L, a, L+\epsilon, L-\epsilon, a+\delta$, and $a-\delta$.
8. (Bonus) Find

$$
\lim _{h \rightarrow 0} \frac{\sqrt[3]{27+h}-3}{h}
$$

