Prove that if P is an arbitrary population and W is the set of z-scores generated from P, then W has mean 0 and standard deviation 1 .

Proof: Let μ_{P} and σ_{P} represent the mean and standard deviation of P, and let μ_{Z} and σ_{Z} represent the mean and standard deviation of W. Let N be the population size, and note that N is also the number of z-scores, since there is one z-score generated for each member of the population. Then by definition of the mean,

$$
\mu_{Z}=\frac{\Sigma_{z \epsilon W}(z)}{N}
$$

Using the definition of the z-score, each z-score satisfies $z=\frac{x-\mu_{P}}{\sigma_{P}}$ for some x in the population. This gives

$$
\mu_{Z}=\frac{\Sigma_{x \epsilon P}\left(\frac{x-\mu_{P}}{\sigma_{P}}\right)}{N}
$$

We can factor out the $\frac{1}{\sigma_{P}}$ and break apart the summation to get

$$
\mu_{Z}=\frac{1}{\sigma_{P} N}\left(\Sigma_{x \epsilon P}(x)-\Sigma_{x \epsilon P}\left(\mu_{P}\right)\right)
$$

Using the definition of μ_{P} gives $\mu_{P}=\frac{\Sigma_{x \epsilon P}(x)}{N}$, and multiplying both sides of this last equation by N gives $N \mu_{P}=\Sigma_{x \epsilon P}(x)$. But we also have $\Sigma_{x \epsilon P}\left(\mu_{P}\right)=N \mu_{P}$, since we are adding up N copies of μ_{P} (one for each member of the population). This gives

$$
\mu_{Z}=\frac{1}{N \sigma_{P}}\left(N \mu_{P}-N \mu_{P}\right)=0
$$

Using the definition of the standard deviation of the z-scores,

$$
\sigma_{Z}=\sqrt{\frac{\Sigma_{z \epsilon W}\left(\left(z-\mu_{Z}\right)^{2}\right)}{N}}
$$

Using the fact that $\mu_{Z}=0$ gives

$$
\sigma_{Z}=\sqrt{\frac{\Sigma_{z \epsilon W}\left(z^{2}\right)}{N}}
$$

Using the definition of the z-score again gives

$$
\sigma_{Z}=\sqrt{\frac{\Sigma_{x \epsilon P}\left(\left(\frac{x-\mu_{P}}{\sigma_{P}}\right)^{2}\right)}{N}}
$$

We can factor out the $\frac{1}{\sigma_{P}^{2}}$ from the summation to get

$$
\sigma_{Z}=\sqrt{\frac{\Sigma_{x \epsilon P}\left(\left(x-\mu_{P}\right)^{2}\right)}{\sigma_{P}^{2} N}}
$$

We can pull the $\frac{1}{\sigma_{P}^{2}}$ outside the square root to get

$$
\sigma_{Z}=\frac{1}{\sigma_{P}} \sqrt{\frac{\Sigma_{x \epsilon P}\left(\left(x-\mu_{P}\right)^{2}\right)}{N}}
$$

But by definition, $\sigma_{P}=\sqrt{\frac{\Sigma_{x \epsilon P}\left(\left(x-\mu_{P}\right)^{2}\right)}{N}}$, so

$$
\sigma_{Z}=\frac{1}{\sigma_{P}} \sigma_{P}=1
$$

