
3. SECTIONAL CURVATURE OF LORENTZIAN MANIFOLDS.

1. Sectional curvature, the Jacobi equation and “tidal stresses”.

The (3,1) Riemann curvature tensor has the same definition in the rie-
mannian and Lorentzian cases:

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

If f(t, s) is a parametrized 2-surface in M (immersion) and W (t, s) is a
vector field on M along f , we have the Ricci formula:
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= R(∂tf, ∂sf)W.

For a variation f(t, s) = γs(t) of a geodesic γ(t) (with variational vector field
J(t) = ∂sf|s=0 along γ(t)) this leads to the Jacobi equation for J :

D2J

dt2
+R(J, γ̇)γ̇ = 0.

The Jacobi operator is the self-adjoint operator on (γ̇)⊥: Rp[v] = Rp(v, γ̇)γ̇.

When γ is a timelike geodesic (the worldline of a free-falling massive
particle) the physical interpretation of J is the relative displacement (space-
like) vector of a neighboring free-falling particle, while the second covariant
derivative J ′′ represents its relative acceleration. The Jacobi operator Rp

gives the “tidal stresses” in terms of the position vector J .

In the Lorentzian case, the sectional curvature is defined only for non-
degenerate two-planes Π ⊂ TpM .

Definition. Let Π = span{X,Y } be a non-degenerate two-dimensional
subspace of TpM . The sectional curvature σXY = σΠ is the real number σ
defined by:

〈R(X,Y )Y,X〉 = σ〈X ∧ Y,X ∧ Y 〉.

Remark: by a result of J. Thorpe, σ does not extend continuously to degen-
erate two-planes, unles it is constant on non-degenerate ones.

Remark/exercise. Let (V, 〈., .〉) be a Lorentzian vector space of dimension
n+ 1. The usual inner product:

〈X ∧ Y,Z ∧W 〉 = 〈X,Z〉〈Y,W 〉 − 〈Y,Z〉〈X,W 〉,
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in space Λ2(V ) of alternating bivectors (of dimension n(n + 1)/2) is non-
degenerate, with signature (n, n(n − 1)/2) (index n). If Π = span{X,Y },
we have 〈X ∧Y,X ∧Y 〉 negative iff Π is Lorentzian, zero iff Π is degenerate,
positive iff Π is spacelike. The number σ depends only on Π, not on the
chosen basis {X,Y }.

Exercise 1: Prove the assertions in this remark.

Interpreting the sign of σ. In the Riemannian case, if σ < 0 everywhere,
the Jacobi equation has exponentially divergent solutions, while if σ > 0 the
solutions are oscillatory (“convergent” geodesics.) This still holds for space-
like two-planes in the Lorentzian case: σ < 0 corresponds to defocusing,
σ > 0 to focusing behavior.

If γ is a timelike geodesic, J(t) a perpendicular Jacobi field (hence J
and J ′′ are spacelike), the 2-planes Π(t) = span{γ′, J(t)} are Lorentzian,
and 〈J ∧ γ′, J ∧ γ′〉 = −|J |2 if |γ′| = 1. We have for the “radial component
of the relative acceleration”:

〈J ′′, J
|J |
〉 = −〈R(J, γ′)γ′, J〉

|J |
= σ|J |.

This is positive if σ > 0 (divergent, defocusing behavior), negative if σ < 0
(convergent, focusing behavior for nearby particles.)

Note this is exactly the opposite of the Riemannian case.

2. Sectional curvature of Lorentzian hyperquadrics.

First we write down the Gauss and Codazzi equations for a non-degenerate
hypersurface M (Riemannian or Lorentzian) in a Lorentzian manifold M̄ .
Denoting by II(X,Y ) the vector-valued second fundamental form (with val-
ues in the normal bundle of M), we have the tangent-normal decompoistion
of ∇̄XY (X ∈ χM , Y ∈ χ̄M ):

∇̄XY = ∇XY+II(X,Y ) = εNA(X,Y )N, A(X,Y ) = 〈II(X,Y ), N〉 = 〈∇̄XY,N〉 = −〈∇̄XN,Y 〉,

where N is a choice of unit normal and εN = 〈N,N〉.

The same derivation as in the Riemannian case gives for the (4,0) Rie-
mann curvature tensors:

¯Riem = Riem+ εNA�A,

and for the sectional curvatures along a non-degenerate 2-plane Π = span{X,Y } ⊂
TuM (orthonormal):

σ̄XY = σXY − εN εΠ[A(X,X)A(Y, Y )−A(X,Y )2],
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where εΠ equals 1 if Π is spacelike, -1 if Π is Lorentzian. If M is totally
umbilic in M̄ with normal curvature vector z (so II(X,Y ) = 〈X,Y 〉z), this
simplifies to:

σ̄XY = σXY − εN 〈z,N〉2,

where N is a choice of unit normal.

Somewhat surprisingly, the Codazzi equation is unchanged:

〈R̄(X,Y )Z,N〉 = (∇XA)(Y,Z)− (∇YA)(X,Z).

In terms of the shape operator defined by 〈S(X), Y 〉 = A(X,Y ):

(∇XS)Y − (∇Y S)X = −R̄(X,Y )N.

This simplifies if M̄ has constant sectional curvature, for then R̄(X,Y )N = 0
if X,Y ∈ χM .

Exercise 2: Verify the claims just made about the Codazzi equation,
including the remark regarding constant curvature spaces.

The standard hyperquadrics in Minkowski space Mn+1 (which is flat)
have constant sectional curvature:

Hyperbolic space Hn(r) = {u|〈u, u〉 = −r2, u0 > 0}. The normal curvature
vector is z(u) = 1

ru (timelike) so σXY = εN 〈z,N〉2 = − 1
r2
.

deSitter spacetime Sn
1 (r) = {u|〈u, u〉 = r2}. The normal curvature vector is

z(u) = −1
ru (spacelike), so σXY = εN 〈z,N〉2 = 1

r2
.

Note this implies timelike geodesics in deSitter space exhibit defocusing,
spacelike geodesics focusing behavior. The Ricci curvature of a timelike
“unit” vector U is Ric(U,U) = −(n− 1)/r2.

3. Totally umbilic and constant curvature hypersurfaces.

Proposition 1. Let M ⊂ M̄ be a hypersurface in a Lorentzian manifold
of constant (sectional curvature C̄. If M is totally umbilic in M̄ , then M
has constant curvature.

Proof. Writing II(X,Y ) = 〈X,Y 〉z and z = kU for some unit normal
vector U and some k ∈ R, we have for the scalar 2nd fundamental form
(with respect to U): A(X,Y ) = k〈X,Y 〉. From the Codazzi equation (since
M̄ has constant curvature):

0 = X(A(Y, Z))− Y (A(X,Z)) = X(k)〈Y,Z〉 − Y (k)〈X,Z〉.
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Thus X(k)Y − Y (k)X = 0 for all X,Y . In particular if 〈X,Y 〉 = 0, Y 6= 0,
taking inner products with Y (non-null) yields X(k) = 0 for all X, so k is
constant.

By the Gauss equation, for any non-degenerate 2-plane in TM with
orthonormal basis {X,Y }, we have:

σXY = σ̄XY + εNk
2 = C̄ + εNk

2.

So M has constant curvature.

The converse also holds, if M has dimension at least three.
Proposition 2. IfM,M̄ have constant curvatures C 6= C̄ and dim(M) ≥

3, then M is totally umbilic in M̄ .

Proof. Let p ∈ M . From the Gauss equation, we have for any p ∈ M ,
vectors x, y, z ∈ TpM :

〈Spx, z〉Spy − 〈Spy, z〉Spx = εN (C − C̄)[〈x, z〉y − 〈y, z〉x].

Let (ea) be an orthonormal basis of TpM diagonalizing S, Sea = λaea.
Using x = ea, y = eb, we find for each z (with ∆ = εN (C − C̄) 6= 0):

(λaλb −∆)〈ea, z〉eb = (λaλb −∆)〈eb, z〉ea,

and we can certainly choose z so that 〈ea, z〉, 〈eb, z〉 are both nonzero; so all
the products λaλb equal the same nonzero number ∆. Since dim(M) ≥ 3,
this is only possible if all λa are equal, so Sp is a multiple of the identity,
and M it totally umbilic.

Proposition 3. Let M ⊂ Mn+1 be a connected, totally umbilic (but
not totally geodesic) hypersurface in Minkowski space. Then M is an open
set of a hyeperquadric (so if M is complete, M is a connected hyperquadric.)

Proof. From proposition 1 we know the shape operator w.r.t a unit
normal U is S = kI, for some constant k defined up to sign, depending on
U (but U

k = −U
−k is well-defined.) Define a map:

F : M →Mn+1, F (p) = p+
1

k
U(p).

The differential is given by:

dF (p)[v] = v +
1

k
∇̄vU = v − 1

k
Spv = 0, v ∈ TpM ;
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so F ≡ const. := p0 ∈ Mn+1, or p − p0 = − 1
kU(p) for all p ∈ M . This

implies:

〈p− p0, p− p0〉 = − 1

k2
〈U,U〉 = ± 1

k2
,

the equation of a hyperquadric.

Corollary. If M ⊂ Mn+1 is a connected hypersurface in Minkowski
space with constant sectional curvature (and dim(M) ≥ 3), and not totally
geodesic, then M is isometric to an open subset of a hyperquadric.

Proof. Follows from the preceding propositions.

Remark. Note that the same proof shows that open sets of spheres are the
(non-planar) hypersurfaces of constant curvature in Rn+1, provided n ≥ 3.
The two-dimensional “pseudospheres” in R3 (with constant curvature -1)
show the dimensional restriction is needed.

Exercise 3. Anti-deSitter (AdS) spacetime.

Denote by Mn+2
2 = (Rn+2, q) the vector space Rn+2, with coordinates

x̄ = (x1, . . . , xn, u, v) = (x, u, v), x ∈ Rn, endowed with the quadratic form
(non-degenerate, with index 2):

q(x̄, x̄) =
n∑

i=1

x2
i − u2 − v2 = |x|2 − u2 − v2.

Consider the hyperquadric in Mn+2
2 :

Mn+1 = {x̄|q(x̄, x̄) = −1}.

(i) Find a diffeomorphism

F : Rn × S1 →Mn+1, F (y, θ) = (x(y, θ), u(y, θ), v(y, θ)).

(ii) Compute the pullback metric F ∗q of the metric induced by q on M (in
coordinates (y, θ)), and show it is Lorentzian.

(iii) Show Mn+1 is totally umbilic in Mn+2
2 , and describe its geodesics.

Show M has closed timelike geodesics.

(iv) Use the Gauss formula to show Mn+1 has constant negative sectional
curvatures.

Remark. Anti deSitter (AdS) spacetime is the universal cover M̃n+1,
diffeomorphic to Rn × R and with no closed timelike geodesics.
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