
STONE-WEIERSTRASS THEOREM-Notes.

Stone-Weierstrass approximation theorem.
Let A be a vector space over R. A is an algebra (or: commutative

algebra with unit) if there exists a ‘multiplication operation’ A × A → A,
(f, g) 7→ f ∗g which is bilinear (linear in f and g), commutative (f ∗g = g∗f)
and there is an element 1 ∈ A (the ‘unit’) satisfying f ∗ 1 = 1 ∗ f = f for
all f ∈ A. A subalgebra of A is a vector subspace of A which is closed under
the multiplication operation and contains the unit.

For any metric space X, the space CbR(X) of continuous, bounded real-
valued functions on X is an algebra over the field of real numbers (with the
operation of pointwise multiplication), satisfying, for the uniform norm:

||fg|| ≤ ||f ||||g||.

The unit is the constant function 1.

Exercise 1. Use this to show that the closure Ā of any subalgebra of
CbR(X) is also a subalgebra. Hint: recall Ā is the set of functions in CbR(X)
which are uniform limits of functions in A. Given f = lim fn, g = lim gn,
the main point is checking that fg = lim(fngn). Estimate |fg − fngn|(x) in
the natural way.

Definition. We say a sub algebra of CbR(X) separates points if ∀x 6= y in
X we may find f ∈ A with f(x) 6= f(y).

Example. The polynomial functions in one variable (with real coeffi-
cients) form a subalgebra of CbR([0, 1]). The polynomial functions in n real
variables form a subalgebra of CbR([0, 1]n). Both of these separate points.

The polynomials in one variable made up of even-degree monomials also
form a subalgebra of CbR([−1, 1]), which doesn’t separate points (any such
polynomial takes the same value at 1 and −1).

Interpolation property. Assume A ⊂ CbR(X) is a subalgebra that sepa-
rates points. For all x 6= y in X and all real numbers a, b, there exists f ∈ A
so that f(x) = a, f(y) = b.

By assumption we know there exists g ∈ A so that g(x) 6= g(y). Set:

f = a+ (b− a)
g − g(x)

g(y)− g(x)
.

(Note that adding a constant to an element of A yields another element of
A, since the unit (the constant function 1) is in A.)
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Stone-Weierstrass theorem. Let X be a compact metric space, A ⊂
CR(X) a subalgebra containing the constants and separating points. Then
A is dense in the Banach space CR(X).

Main Lemma. The pointwise max and the pointwise min of finitely many
functions in Ā is still in Ā.

We first give the proof of the theorem assuming the main lemma, then
prove the lemma. There are two steps:

Step 1. Given f ∈ CR(X), x ∈ X and ε > 0, we find gx ∈ Ā so that
g(x) = f(x) and gx(y) ≤ f(y) + ε, for all y ∈ X.

Step 2. Using compactness, argue there are finitely many points x1, . . . , xN ∈
X so that ϕ(x) = max{gx1(x), . . . , gxN (x)} (which is in Ā, by the main
lemma) satisfies:

f(y)− ε ≤ ϕ(y) ≤ f(y) + ε,

for all y ∈ X. Thus for any ε > 0 we may find ϕ ∈ Ā so that ||f − ϕ|| ≤ ε
(uniform norm). So f ∈ Ā.

Step 1. For each f ∈ CR(X), each x ∈ X and any ε > 0, there exists a
function g ∈ Ā so that g(x) = f(x) and g(y) ≤ f(y) + ε∀y ∈ X.

Proof. Given z ∈ X with z 6= x, let hz ∈ Ā satisfy hz(x) = f(x) and
hz(z) = f(z) + ε/2 (from the interpolation property.) By continuity, there
is an open neighborhood Vz of z in X so that, for each y ∈ Vz we have
hz(y) ≤ f(y) + ε. These define an open cover {Vz}z∈X of X. Taking a
finite subcover {Vzi}Ni=1 of X, we find (from the Main Lemma) the function
g = min{hzi |i = 1, . . . , N} is in Ā and satisfies the conditions required.

Proof of Step 2.
Let f ∈ CR(X) be arbitrary Given ε > 0 and x ∈ X, let gx ∈ Ā be

the function from Step 1. By continuity there is a neighborhood U(x) of x
in X so that gx(y) ≥ f(y) − ε for y ∈ U(x). Cover X by a finite number
of neighborhoods U(xi), i = 1, . . . , N . Then (from the Main Lemma) the
function ϕ = max(gxi) is in Ā and satisfies f(y)− ε ≤ ϕ(y) ≤ f(y) + ε.

Prior to proving the Main Lemma, we need a result of general interest.
It is easy to give examples of sequences of continuous functions converging
non-uniformly to a continuous function. (For example, consider xn(1− xn)
in [0, 1].) However, this can’t happen for monotone sequences on compact
spaces:

Dini’s theorem. Let X be a compact metric space. If an increasing (or
decreasing) sequence (fn) of continuous real-valued functions onX converges
pointwise to a continuous function f , then the convergence is uniform.
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Proof. Given ε > 0 and x ∈ X we may find an integer n(x) so that
0 ≤ f(x)− fn(x)(x) ≤ ε. By continuity (of f and fn(x) at x), we may find a
neighborhood V (x) of x in X so that:

|f(x)− f(y)| ≤ ε and |fn(x)(x)− fn(x)(y)| ≤ ε, for all y ∈ V (x).

Then for each y ∈ V (x) we have 0 ≤ f(y) − fn(x)(y) ≤ 3ε. Take a finite
subcover of {V (x)}x∈X and the maximum N of the n(xi). Then for each
n ≥ N we have f(y)− fn(y) ≤ f(y)− fn(xi)(y) ≤ 3ε, if y ∈ V (xi). Since the
V (xi) cover X, this ends the proof.

Question. What goes wrong in this proof if the sequence is not mono-
tone?

Proof of the Main Lemma.
Step 1. There exists a sequence (un) of real polynomials approximating√

t uniformly in [0, 1].
Define un by recurrence, letting u1 = 0 and setting:

un+1(t) = un(t) +
1

2
(t− un(t)2).

We show by induction that un+1 ≥ un and un(t) ≤
√
t in [0, 1]. It follows

from the recursion relation that the first fact follows from the second. On
the other hand,

√
t− un+1(t) =

√
t− un(t)− 1

2
(t− u2n(t)) = (

√
t− un(t))(1− 1

2
(
√
t+ un(t))

and from un(t) ≤
√
t it follows that the second factor is positive. Thus we

have pointwise convergence of un to
√
t (from the recurrence relation), and

then uniform convergence follows from Dini’s theorem.

Exercise 2. Compute the approximations un(t) for n = 1, 2, 3, 4, and
plot them in [0, 1] (on the same graph).

Step 2. If f ∈ Ā, then |f | ∈ Ā, the closure of A in CR(X).
Let a = ||f || (sup norm). The function f2/a2 is in Ā (since Ā is an

algebra) and takes values in [0, 1]. If un(t) are the functions from Step 1,
the compositions un ◦ (f2/a2) are in Ā (again since A is an algebra), and
converge uniformly to |f |/a.

Step 3. If f, g ∈ A, then max{f, g},min{f, g} are also in Ā.

max{f, g} =
1

2
(f + g + |f − g|), min{f, g} =

1

2
(f + g − |f − g|).
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Step 4 (final). The pointwise max and the pointwise min of finitely many
functions in Ā is still in Ā: follows from Step 3, since minimizing over a finite
set amounts to a finite number of pair comparisons.

Remark. The theorem is false for subalgebras of CC(X) (complex-valued
functions). This follows from the classical result in Complex Analysis:

Let fn : D → C be a sequence of complex analytic functions in a domain
D ⊂ C. Suppose fn → f uniformly on compact subsets of D. Then f : D →
C is analytic in D.

Corollary 1. (Polynomials in Rn.) Any real-valued continuous function
on a compact subset of Rn is the uniform limit of a sequence of polynomials.

Corollary 2. (Separability.) If X is a compact metric space, the space
CR(X) is separable.

First note that a compact metric space X is separable. Indeed covering
X by open balls of radius 1/n we see that for each n ≥ 1 there is a finite set
An so that, for each x ∈ X, d(x,An) ≤ 1/n. Then A = ∪nAn is countable,
and it is easy to see that Ā = X.

Exercise 6. Prove this: for any x ∈ X, there exists a sequence (xj)j≥1
of points of A, so that d(xj , x)→ 0.

In general, any separable metric space is second-countable (that is, has
a countable basis of open sets): Let D be a countable dense set, B the
countable set of open balls with rational radius and center a point of D. Let
U be open, and x ∈ U . Then there is a ball Br(x) ⊂ U with r rational, and
we can find some d ∈ D ∩ Br/3(x). Then x ∈ B2r/3(d) ⊂ Br(x) ⊂ U , and
B2r/3(d) is in B.

Let (Un) be a countable basis for the topology of X, and let gn(x) =
d(x;X \ Un). The monomials gm1

1 . . . gmr
r (with the mj integers) form a

countable set (hn) of continuous functions on X, and the vector space they
span is the algebra A generated by the gn. So it suffices to use the Stone-
Weierstrass theorem to conclude A is dense in CR(X).

The family {gn} separates points: if x 6= y, we may find an Un so that
x ∈ Un, y 6∈ Un, and thus gn(x) 6= 0, gn(y) = 0.

Alternative approach: Bernstein polynomials.
It is a remarkable fact that, for uniform approximation by polynomials

in the unit interval [0, 1], there is an explicit procedure that amounts almost
to “a formula”.
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Denote by Cnj = Cnn−j the binomial coefficient: Cnj = n!
j!(n−j)! , 0 ≤ j ≤ n.

As we learn in high school:

n∑
j=0

Cbjx
j(1− x)n−j = (x+ 1− x)n = 1, x ∈ [0, 1].

We use these terms as coefficients and, for each n ≥ 1, ‘sample’ the
function f ∈ C[0, 1] at equidistant points to define the polynomial Bn[f ](x):

Bn[f ](x) =
n∑
j=0

f(
j

n
)Cnj x

j(1− x)n−j .

Theorem: Bn[f ]→ f uniformly in [0, 1].

Proof. First note that Bn[f ](0) = f(0), Bn[f ](1) = f(1). Then, letting
qnj(x) = Cnj x

j(1− x)n−j , we have:

n∑
j=0

qnj(x) ≡ 1⇒ |f(x)−Bn[f ](x)| ≤
n∑
j=0

|f(x)− f(
j

n
)|qnj(x).

By uniform continuity of f , given ε > 0 we may find δ > 0 (depending only
on ε and f) so that |f(x) − f( jn)| < ε whenever |x − j

n | < δ. So for each

x ∈ [0, 1] we split the points j
n in [0, 1] into two sets:

N1 = {j = 1, . . . , n; |x− j

n
| < δ}, N2 = {j = 1, . . . , n; |x− j

n
| ≥ δ}.

The sum over N1 is easy to estimate:

∑
j∈N1

|f(x)− f(
j

n
)(x)|qnj(x) < ε

n∑
j=0

qnj(x) = ε.

To estimate the other sum, we need a lemma.

Lemma.
∑n

j=0 qnj(x)(x− j
n)2 = x(1−x)

n ≤ 1
4n .

Assuming the lemma, with |f(x)| ≤M in [0, 1] we have:

∑
j∈N2

|f(x)− f(
j

n
)(x)|qnj(x) ≤ 2M

n∑
j=0

qnj(x)
(x− j

n)2

δ2
≤ M

2nδ2
< ε,

provided n > M/2δ2. This concludes the proof.
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Proof of Lemma. Expanding (x− j
n)2, we see it is enough to compute:

Bn[1](x) =
n−1∑
j=0

qnj(x) = 1;

using (j/n)Cnj = Cn−1j−1 :

Bn[x](x) =
n∑
j=0

qnj(x)
j

n
= x

n∑
j=1

Cn−1j−1 x
j−1(1−x)(n−1)−(j−1) = x

n−1∑
k=0

q(n−1)k(x) = x.

Bn[x2](x) =

n∑
j=0

(
j

n
Cnj )xj(1−x)n−j(

j

n
) =

x

n

n∑
j=1

(j−1)Cn−1j−1 x
j−1(1−x)(n−1)−(j−1)+

x

n

=
x2

n
(n− 1)

n∑
j=2

Cn−2j−2 x
j−2(1− x)n−2−(j−2) +

x

n
= x2 +

1

n
x(1− x).

Remark 1. Note that this computes the Bernstein polynomials of 1, x, x2.
In particular, 1 and x are eigenfunctions of the linear operator Bn in C[0, 1],
with eigenvalue 1.

Exercise 3. Do the calculation that completes the proof of the Lemma.

Exercise 4. Show that f(x) = x(1 − x) is an eigenfunction of the
linear operator Bn in C[0, 1], with eigenvalue λ = (n − 1)/n. (This means
Bn[f ] = λf .)

Exercise 5. Compute Bn[f ](x) for f(x) =
√
x and n = 1, 2, 3, 4, and

plot them in [0, 1].

Remark 2. The following is sometimes called Fundamental Theorem on
Approximation in Normed Vector spaces: If V is a finite-dimensional vector
space of a normed vector space E, then for every f ∈ E there exists at
least one best approximation p ∈ V . (For example, E = CbR([0, 1]), V the
subspace of real-valued polynomials of degree n, restricted to [0, 1]).

The theorem follows from the fact that V is closed in E, so if f ∈ E \ V
the distance d(f, V ) = inf{||f −p||; p ∈ V } is positive, and attained by some
vector p ∈ V . (By a previous exercise.)

Remark 3. We have the following quantitative error estimate for approx-
imation by Bn[f ] in CR[0, 1]:

||f −Bn[f ]|| ≤ 5

4
ωf (

1√
n

).
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Here ωf is the modulus of continuity of the continuous function f :

ωf (δ) = sup{|f(x)− f(y)|; |x− y| ≤ δ, x, y ∈ [0, 1]}.

For example, if f is Hölder continuous with exponent α ∈ (0, 1): ωf (δ) ≤
Kδα.
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