STONE-WEIERSTRASS THEOREM-Notes.

Stone-Weierstrass approximation theorem.

Let A be a vector space over R. A is an algebra (or: commutative algebra with unit) if there exists a 'multiplication operation' $A \times A \rightarrow A$, $(f, g) \mapsto f * g$ which is bilinear (linear in f and g), commutative $(f * g=g * f)$ and there is an element $1 \in A$ (the 'unit') satisfying $f * 1=1 * f=f$ for all $f \in A$. A subalgebra of A is a vector subspace of A which is closed under the multiplication operation and contains the unit.

For any metric space X, the space $C_{R}^{b}(X)$ of continuous, bounded realvalued functions on X is an algebra over the field of real numbers (with the operation of pointwise multiplication), satisfying, for the uniform norm:

$$
\|f g\| \leq\|f\|\|g\| .
$$

The unit is the constant function 1 .
Exercise 1. Use this to show that the closure \bar{A} of any subalgebra of $C_{R}^{b}(X)$ is also a subalgebra. Hint: recall \bar{A} is the set of functions in $C_{R}^{b}(X)$ which are uniform limits of functions in A. Given $f=\lim f_{n}, g=\lim g_{n}$, the main point is checking that $f g=\lim \left(f_{n} g_{n}\right)$. Estimate $\left|f g-f_{n} g_{n}\right|(x)$ in the natural way.

Definition. We say a sub algebra of $C_{R}^{b}(X)$ separates points if $\forall x \neq y$ in X we may find $f \in A$ with $f(x) \neq f(y)$.

Example. The polynomial functions in one variable (with real coefficients) form a subalgebra of $C_{R}^{b}([0,1])$. The polynomial functions in n real variables form a subalgebra of $C_{R}^{b}\left([0,1]^{n}\right)$. Both of these separate points.

The polynomials in one variable made up of even-degree monomials also form a subalgebra of $C_{R}^{b}([-1,1])$, which doesn't separate points (any such polynomial takes the same value at 1 and -1).

Interpolation property. Assume $A \subset C_{R}^{b}(X)$ is a subalgebra that separates points. For all $x \neq y$ in X and all real numbers a, b, there exists $f \in A$ so that $f(x)=a, f(y)=b$.

By assumption we know there exists $g \in A$ so that $g(x) \neq g(y)$. Set:

$$
f=a+(b-a) \frac{g-g(x)}{g(y)-g(x)} .
$$

(Note that adding a constant to an element of A yields another element of A, since the unit (the constant function 1) is in A.)

Stone-Weierstrass theorem. Let X be a compact metric space, $A \subset$ $C_{R}(X)$ a subalgebra containing the constants and separating points. Then A is dense in the Banach space $C_{R}(X)$.

Main Lemma. The pointwise max and the pointwise min of finitely many functions in \bar{A} is still in \bar{A}.

We first give the proof of the theorem assuming the main lemma, then prove the lemma. There are two steps:

Step 1. Given $f \in C_{R}(X), x \in X$ and $\epsilon>0$, we find $g_{x} \in \bar{A}$ so that $g(x)=f(x)$ and $g_{x}(y) \leq f(y)+\epsilon$, for all $y \in X$.

Step 2. Using compactness, argue there are finitely many points $x_{1}, \ldots, x_{N} \in$ X so that $\varphi(x)=\max \left\{g_{x_{1}}(x), \ldots, g_{x_{N}}(x)\right\}$ (which is in \bar{A}, by the main lemma) satisfies:

$$
f(y)-\epsilon \leq \varphi(y) \leq f(y)+\epsilon,
$$

for all $y \in X$. Thus for any $\epsilon>0$ we may find $\varphi \in \bar{A}$ so that $\|f-\varphi\| \leq \epsilon$ (uniform norm). So $f \in \bar{A}$.

Step 1. For each $f \in C_{R}(X)$, each $x \in X$ and any $\epsilon>0$, there exists a function $g \in \bar{A}$ so that $g(x)=f(x)$ and $g(y) \leq f(y)+\epsilon \forall y \in X$.

Proof. Given $z \in X$ with $z \neq x$, let $h_{z} \in \bar{A}$ satisfy $h_{z}(x)=f(x)$ and $h_{z}(z)=f(z)+\epsilon / 2$ (from the interpolation property.) By continuity, there is an open neighborhood V_{z} of z in X so that, for each $y \in V_{z}$ we have $h_{z}(y) \leq f(y)+\epsilon$. These define an open cover $\left\{V_{z}\right\}_{z \in X}$ of X. Taking a finite subcover $\left\{V_{z_{i}}\right\}_{i=1}^{N}$ of X, we find (from the Main Lemma) the function $g=\min \left\{h_{z_{i}} \mid i=1, \ldots, N\right\}$ is in \bar{A} and satisfies the conditions required.

Proof of Step 2.
Let $f \in C_{R}(X)$ be arbitrary Given $\epsilon>0$ and $x \in X$, let $g_{x} \in \bar{A}$ be the function from Step 1. By continuity there is a neighborhood $U(x)$ of x in X so that $g_{x}(y) \geq f(y)-\epsilon$ for $y \in U(x)$. Cover X by a finite number of neighborhoods $U\left(x_{i}\right), i=1, \ldots, N$. Then (from the Main Lemma) the function $\varphi=\max \left(g_{x_{i}}\right)$ is in \bar{A} and satisfies $f(y)-\epsilon \leq \varphi(y) \leq f(y)+\epsilon$.

Prior to proving the Main Lemma, we need a result of general interest. It is easy to give examples of sequences of continuous functions converging non-uniformly to a continuous function. (For example, consider $x^{n}\left(1-x^{n}\right)$ in $[0,1]$.) However, this can't happen for monotone sequences on compact spaces:

Dini's theorem. Let X be a compact metric space. If an increasing (or decreasing) sequence (f_{n}) of continuous real-valued functions on X converges pointwise to a continuous function f, then the convergence is uniform.

Proof. Given $\epsilon>0$ and $x \in X$ we may find an integer $n(x)$ so that $0 \leq f(x)-f_{n(x)}(x) \leq \epsilon$. By continuity (of f and $f_{n(x)}$ at x), we may find a neighborhood $V(x)$ of x in X so that:

$$
|f(x)-f(y)| \leq \epsilon \text { and }\left|f_{n(x)}(x)-f_{n(x)}(y)\right| \leq \epsilon, \text { for all } y \in V(x)
$$

Then for each $y \in V(x)$ we have $0 \leq f(y)-f_{n(x)}(y) \leq 3 \epsilon$. Take a finite subcover of $\{V(x)\}_{x \in X}$ and the maximum N of the $n\left(x_{i}\right)$. Then for each $n \geq N$ we have $f(y)-f_{n}(y) \leq f(y)-f_{n\left(x_{i}\right)}(y) \leq 3 \epsilon$, if $y \in V\left(x_{i}\right)$. Since the $V\left(x_{i}\right)$ cover X, this ends the proof.

Question. What goes wrong in this proof if the sequence is not monotone?

Proof of the Main Lemma.
Step 1. There exists a sequence $\left(u_{n}\right)$ of real polynomials approximating \sqrt{t} uniformly in $[0,1]$.

Define u_{n} by recurrence, letting $u_{1}=0$ and setting:

$$
u_{n+1}(t)=u_{n}(t)+\frac{1}{2}\left(t-u_{n}(t)^{2}\right)
$$

We show by induction that $u_{n+1} \geq u_{n}$ and $u_{n}(t) \leq \sqrt{t}$ in $[0,1]$. It follows from the recursion relation that the first fact follows from the second. On the other hand,
$\sqrt{t}-u_{n+1}(t)=\sqrt{t}-u_{n}(t)-\frac{1}{2}\left(t-u_{n}^{2}(t)\right)=\left(\sqrt{t}-u_{n}(t)\right)\left(1-\frac{1}{2}\left(\sqrt{t}+u_{n}(t)\right)\right.$
and from $u_{n}(t) \leq \sqrt{t}$ it follows that the second factor is positive. Thus we have pointwise convergence of u_{n} to \sqrt{t} (from the recurrence relation), and then uniform convergence follows from Dini's theorem.

Exercise 2. Compute the approximations $u_{n}(t)$ for $n=1,2,3,4$, and plot them in $[0,1]$ (on the same graph).

Step 2. If $f \in \bar{A}$, then $|f| \in \bar{A}$, the closure of A in $C_{R}(X)$.
Let $a=\|f\|$ (sup norm). The function f^{2} / a^{2} is in \bar{A} (since \bar{A} is an algebra) and takes values in $[0,1]$. If $u_{n}(t)$ are the functions from Step 1, the compositions $u_{n} \circ\left(f^{2} / a^{2}\right)$ are in \bar{A} (again since A is an algebra), and converge uniformly to $|f| / a$.

Step 3. If $f, g \in A$, then $\max \{f, g\}, \min \{f, g\}$ are also in \bar{A}.

$$
\max \{f, g\}=\frac{1}{2}(f+g+|f-g|), \quad \min \{f, g\}=\frac{1}{2}(f+g-|f-g|)
$$

Step 4 (final). The pointwise max and the pointwise min of finitely many functions in \bar{A} is still in \bar{A} : follows from Step 3, since minimizing over a finite set amounts to a finite number of pair comparisons.

Remark. The theorem is false for subalgebras of $C_{\mathbb{C}}(X)$ (complex-valued functions). This follows from the classical result in Complex Analysis:

Let $f_{n}: D \rightarrow \mathbb{C}$ be a sequence of complex analytic functions in a domain $D \subset \mathbb{C}$. Suppose $f_{n} \rightarrow f$ uniformly on compact subsets of D. Then $f: D \rightarrow$ \mathbb{C} is analytic in D.

Corollary 1. (Polynomials in R^{n}.) Any real-valued continuous function on a compact subset of R^{n} is the uniform limit of a sequence of polynomials.

Corollary 2. (Separability.) If X is a compact metric space, the space $C_{R}(X)$ is separable.

First note that a compact metric space X is separable. Indeed covering X by open balls of radius $1 / n$ we see that for each $n \geq 1$ there is a finite set A_{n} so that, for each $x \in X, d\left(x, A_{n}\right) \leq 1 / n$. Then $A=\cup_{n} A_{n}$ is countable, and it is easy to see that $\bar{A}=X$.

Exercise 6. Prove this: for any $x \in X$, there exists a sequence $\left(x_{j}\right)_{j \geq 1}$ of points of A, so that $d\left(x_{j}, x\right) \rightarrow 0$.

In general, any separable metric space is second-countable (that is, has a countable basis of open sets): Let D be a countable dense set, \mathcal{B} the countable set of open balls with rational radius and center a point of D. Let U be open, and $x \in U$. Then there is a ball $B_{r}(x) \subset U$ with r rational, and we can find some $d \in D \cap B_{r / 3}(x)$. Then $x \in B_{2 r / 3}(d) \subset B_{r}(x) \subset U$, and $B_{2 r / 3}(d)$ is in \mathcal{B}.

Let $\left(U_{n}\right)$ be a countable basis for the topology of X, and let $g_{n}(x)=$ $d\left(x ; X \backslash U_{n}\right)$. The monomials $g_{1}^{m_{1}} \ldots g_{r}^{m_{r}}$ (with the m_{j} integers) form a countable set $\left(h_{n}\right)$ of continuous functions on X, and the vector space they span is the algebra A generated by the g_{n}. So it suffices to use the StoneWeierstrass theorem to conclude A is dense in $C_{R}(X)$.

The family $\left\{g_{n}\right\}$ separates points: if $x \neq y$, we may find an U_{n} so that $x \in U_{n}, y \notin U_{n}$, and thus $g_{n}(x) \neq 0, g_{n}(y)=0$.

Alternative approach: Bernstein polynomials.

It is a remarkable fact that, for uniform approximation by polynomials in the unit interval $[0,1]$, there is an explicit procedure that amounts almost to "a formula".

Denote by $C_{j}^{n}=C_{n-j}^{n}$ the binomial coefficient: $C_{j}^{n}=\frac{n!}{j!(n-j)!}, 0 \leq j \leq n$. As we learn in high school:

$$
\sum_{j=0}^{n} C_{j}^{b} x^{j}(1-x)^{n-j}=(x+1-x)^{n}=1, \quad x \in[0,1] .
$$

We use these terms as coefficients and, for each $n \geq 1$, 'sample' the function $f \in C[0,1]$ at equidistant points to define the polynomial $B_{n}[f](x)$:

$$
B_{n}[f](x)=\sum_{j=0}^{n} f\left(\frac{j}{n}\right) C_{j}^{n} x^{j}(1-x)^{n-j}
$$

Theorem: $B_{n}[f] \rightarrow f$ uniformly in $[0,1]$.
Proof. First note that $B_{n}[f](0)=f(0), B_{n}[f](1)=f(1)$. Then, letting $q_{n j}(x)=C_{j}^{n} x^{j}(1-x)^{n-j}$, we have:

$$
\sum_{j=0}^{n} q_{n j}(x) \equiv 1 \Rightarrow\left|f(x)-B_{n}[f](x)\right| \leq \sum_{j=0}^{n}\left|f(x)-f\left(\frac{j}{n}\right)\right| q_{n j}(x) .
$$

By uniform continuity of f, given $\epsilon>0$ we may find $\delta>0$ (depending only on ϵ and f) so that $\left|f(x)-f\left(\frac{j}{n}\right)\right|<\epsilon$ whenever $\left|x-\frac{j}{n}\right|<\delta$. So for each $x \in[0,1]$ we split the points $\frac{j}{n}$ in $[0,1]$ into two sets:

$$
N_{1}=\left\{j=1, \ldots, n ;\left|x-\frac{j}{n}\right|<\delta\right\}, \quad N_{2}=\left\{j=1, \ldots, n ;\left|x-\frac{j}{n}\right| \geq \delta\right\} .
$$

The sum over N_{1} is easy to estimate:

$$
\sum_{j \in N_{1}}\left|f(x)-f\left(\frac{j}{n}\right)(x)\right| q_{n j}(x)<\epsilon \sum_{j=0}^{n} q_{n j}(x)=\epsilon .
$$

To estimate the other sum, we need a lemma.

$$
\operatorname{Lemma} \cdot \sum_{j=0}^{n} q_{n j}(x)\left(x-\frac{j}{n}\right)^{2}=\frac{x(1-x)}{n} \leq \frac{1}{4 n} .
$$

Assuming the lemma, with $|f(x)| \leq M$ in $[0,1]$ we have:

$$
\sum_{j \in N_{2}}\left|f(x)-f\left(\frac{j}{n}\right)(x)\right| q_{n j}(x) \leq 2 M \sum_{j=0}^{n} q_{n j}(x) \frac{\left(x-\frac{j}{n}\right)^{2}}{\delta^{2}} \leq \frac{M}{2 n \delta^{2}}<\epsilon,
$$

provided $n>M / 2 \delta^{2}$. This concludes the proof.

Proof of Lemma. Expanding $\left(x-\frac{j}{n}\right)^{2}$, we see it is enough to compute:

$$
B_{n}[1](x)=\sum_{j=0}^{n-1} q_{n j}(x)=1 ;
$$

$\operatorname{using}(j / n) C_{j}^{n}=C_{j-1}^{n-1}$:

$$
\begin{aligned}
& B_{n}x=\sum_{j=0}^{n} q_{n j}(x) \frac{j}{n}=x \sum_{j=1}^{n} C_{j-1}^{n-1} x^{j-1}(1-x)^{(n-1)-(j-1)}=x \sum_{k=0}^{n-1} q_{(n-1) k}(x)=x . \\
& B_{n}\left[x^{2}\right](x)=\sum_{j=0}^{n}\left(\frac{j}{n} C_{j}^{n}\right) x^{j}(1-x)^{n-j}\left(\frac{j}{n}\right)=\frac{x}{n} \sum_{j=1}^{n}(j-1) C_{j-1}^{n-1} x^{j-1}(1-x)^{(n-1)-(j-1)}+\frac{x}{n} \\
& \quad=\frac{x^{2}}{n}(n-1) \sum_{j=2}^{n} C_{j-2}^{n-2} x^{j-2}(1-x)^{n-2-(j-2)}+\frac{x}{n}=x^{2}+\frac{1}{n} x(1-x) .
\end{aligned}
$$

Remark 1. Note that this computes the Bernstein polynomials of $1, x, x^{2}$. In particular, 1 and x are eigenfunctions of the linear operator B_{n} in $C[0,1]$, with eigenvalue 1 .

Exercise 3. Do the calculation that completes the proof of the Lemma.
Exercise 4. Show that $f(x)=x(1-x)$ is an eigenfunction of the linear operator B_{n} in $C[0,1]$, with eigenvalue $\lambda=(n-1) / n$. (This means $B_{n}[f]=\lambda f$.)

Exercise 5. Compute $B_{n}[f](x)$ for $f(x)=\sqrt{x}$ and $n=1,2,3,4$, and plot them in $[0,1]$.

Remark 2. The following is sometimes called Fundamental Theorem on Approximation in Normed Vector spaces: If V is a finite-dimensional vector space of a normed vector space E, then for every $f \in E$ there exists at least one best approximation $p \in V$. (For example, $E=C_{R}^{b}([0,1]), V$ the subspace of real-valued polynomials of degree n, restricted to $[0,1]$).

The theorem follows from the fact that V is closed in E, so if $f \in E \backslash V$ the distance $d(f, V)=\inf \{\|f-p\| ; p \in V\}$ is positive, and attained by some vector $p \in V$. (By a previous exercise.)

Remark 3. We have the following quantitative error estimate for approximation by $B_{n}[f]$ in $C_{R}[0,1]$:

$$
\left\|f-B_{n}[f]\right\| \leq \frac{5}{4} \omega_{f}\left(\frac{1}{\sqrt{n}}\right) .
$$

Here ω_{f} is the modulus of continuity of the continuous function f :

$$
\omega_{f}(\delta)=\sup \{|f(x)-f(y)| ;|x-y| \leq \delta, x, y \in[0,1]\} .
$$

For example, if f is Hölder continuous with exponent $\alpha \in(0,1): \omega_{f}(\delta) \leq$ $K \delta^{\alpha}$.

