STONE-WEIERSTRASS THEOREM-Notes.

Stone-Weierstrass approximation theorem.

Let A be a vector space over R. A is an algebra (or: commutative
algebra with unit) if there exists a ‘multiplication operation’ A x A — A,
(f,g) — f*g which is bilinear (linear in f and g), commutative (f*xg = gx* f)
and there is an element 1 € A (the ‘unit’) satisfying fx1 = 1% f = f for
all f e A. A subalgebra of A is a vector subspace of A which is closed under
the multiplication operation and contains the unit.

For any metric space X, the space C%(X ) of continuous, bounded real-
valued functions on X is an algebra over the field of real numbers (with the
operation of pointwise multiplication), satisfying, for the uniform norm:

Fgll < 11 f11gll-

The unit is the constant function 1.

Exercise 1. Use this to show that the closure A of any subalgebra of
C%(X) is also a subalgebra. Hint: recall A is the set of functions in C%(X)
which are uniform limits of functions in A. Given f = lim f,,,g = limg,,
the main point is checking that fg = lim(f,g,). Estimate |fg — fngn|(x) in
the natural way.

Definition. We say a sub algebra of C%(X ) separates points if Vr # y in
X we may find f € A with f(z) # f(y).

Ezample. The polynomial functions in one variable (with real coeffi-
cients) form a subalgebra of C%([0,1]). The polynomial functions in n real
variables form a subalgebra of C%([0,1]"). Both of these separate points.

The polynomials in one variable made up of even-degree monomials also
form a subalgebra of C%([—1,1]), which doesn’t separate points (any such
polynomial takes the same value at 1 and —1).

Interpolation property. Assume A C C’%(X ) is a subalgebra that sepa-
rates points. For all z # y in X and all real numbers a, b, there exists f € A

so that f(z) =a, f(y) =b.
By assumption we know there exists g € A so that g(z) # g(y). Set:

g —9(x)

9(y) —g(x)

(Note that adding a constant to an element of A yields another element of
A, since the unit (the constant function 1) is in A.)

f=a+(b—a)



Stone-Weierstrass theorem. Let X be a compact metric space, A C
Cr(X) a subalgebra containing the constants and separating points. Then
A is dense in the Banach space Cr(X).

Main Lemma. The pointwise max and the pointwise min of finitely many
functions in A is still in A.

We first give the proof of the theorem assuming the main lemma, then
prove the lemma. There are two steps:

Step 1. Given f € Cr(X),z € X and € > 0, we find g, € A so that
g(z) = f(z) and gz (y) < f(y) +¢ forally € X.

Step 2. Using compactness, argue there are finitely many points z1,...,zxy €
X so that ¢(x) = max{gs, (¥),...,gzx(x)} (which is in A, by the main
lemma) satisfies:

fly) —e<e(y) < fly) +e

for all y € X. Thus for any € > 0 we may find ¢ € A so that ||f — || < e
(uniform norm). So f € A.

Step 1. For each f € Cr(X), each x € X and any € > 0, there exists a
function g € A so that g(z) = f(z) and g(y) < f(y) + eVy € X.

Proof. Given z € X with z # =, let h, € A satisfy h,(z) = f(z) and
h.(z) = f(z) + €/2 (from the interpolation property.) By continuity, there
is an open neighborhood V, of z in X so that, for each y € V, we have
h:(y) < f(y) + e. These define an open cover {V,},cx of X. Taking a
finite subcover {V.,}¥, of X, we find (from the Main Lemma) the function
g =min{h,|i =1,...,N} is in A and satisfies the conditions required.

Proof of Step 2.

Let f € Cr(X) be arbitrary Given ¢ > 0 and z € X, let g, € A be
the function from Step 1. By continuity there is a neighborhood U(z) of =
in X so that g»(y) > f(y) — € for y € U(x). Cover X by a finite number
of neighborhoods U(x;), i = 1,..., N. Then (from the Main Lemma) the
function ¢ = max(g,,) is in A and satisfies f(y) — e < p(y) < f(y) + €.

Prior to proving the Main Lemma, we need a result of general interest.
It is easy to give examples of sequences of continuous functions converging
non-uniformly to a continuous function. (For example, consider z"(1 — z™)
in [0,1].) However, this can’t happen for monotone sequences on compact
spaces:

Dini’s theorem. Let X be a compact metric space. If an increasing (or
decreasing) sequence ( f,,) of continuous real-valued functions on X converges
pointwise to a continuous function f, then the convergence is uniform.



Proof. Given € > 0 and x € X we may find an integer n(x) so that
0 < f(%) — fu@)(z) < €. By continuity (of f and f,(,) at ), we may find a
neighborhood V'(z) of z in X so that:

[f (@) = f(y)] < eand |fo@)(2) = fa@)(y)] <€ forall y € V(x).

Then for each y € V(x) we have 0 < f(y) — fyx)(y) < 3e. Take a finite
subcover of {V(z)},cx and the maximum N of the n(x;). Then for each
n > N we have f(y) — fu(y) < f(y) = fa@)(y) < 3¢, if y € V(z;). Since the
V(z;) cover X, this ends the proof.

Question. What goes wrong in this proof if the sequence is not mono-
tone?

Proof of the Main Lemma.

Step 1. There exists a sequence (u,) of real polynomials approximating
v/t uniformly in [0, 1].

Define u,, by recurrence, letting u; = 0 and setting:

st (£) = un(t) + %(t (D).

We show by induction that wu,+1 > u, and u,(t) < v/t in [0,1]. It follows
from the recursion relation that the first fact follows from the second. On
the other hand,

VIt (8) = VE = un(t) — (0~ w2(0) = (VE— un(D)(1 = 3 (VE+ (1)

and from u,(t) < v/t it follows that the second factor is positive. Thus we
have pointwise convergence of u, to v/¢ (from the recurrence relation), and
then uniform convergence follows from Dini’s theorem.

Exercise 2. Compute the approximations wu,(t) for n = 1,2,3,4, and
plot them in [0, 1] (on the same graph).

Step 2. If f € A, then |f| € A, the closure of A in Cr(X).

Let a = ||f]| (sup norm). The function f2/a? is in A (since A is an
algebra) and takes values in [0,1]. If u,(¢) are the functions from Step 1,
the compositions u, o (f2/a?) are in A (again since A is an algebra), and
converge uniformly to |f|/a.

Step 3. If f,g € A, then max{f, g}, min{f, g} are also in A.

max{f,g) = 3(f + g+ 1f ~gl), min{f,g} = 5(/ +9-1f ~ g)).
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Step 4 (final). The pointwise max and the pointwise min of finitely many
functions in A is still in A: follows from Step 3, since minimizing over a finite
set amounts to a finite number of pair comparisons.

Remark. The theorem is false for subalgebras of Cc(X) (complex-valued
functions). This follows from the classical result in Complex Analysis:

Let f, : D — C be a sequence of complex analytic functions in a domain
D c C. Suppose f, — f uniformly on compact subsets of D. Then f : D —
C is analytic in D.

Corollary 1. (Polynomials in R™.) Any real-valued continuous function
on a compact subset of R" is the uniform limit of a sequence of polynomials.

Corollary 2. (Separability.) If X is a compact metric space, the space
CRr(X) is separable.

First note that a compact metric space X is separable. Indeed covering
X by open balls of radius 1/n we see that for each n > 1 there is a finite set
Ay, so that, for each z € X, d(x, A4,,) < 1/n. Then A = U, A, is countable,
and it is easy to see that A = X.

Exercise 6. Prove this: for any « € X, there exists a sequence (z;);>1
of points of A, so that d(z;,z) — 0.

In general, any separable metric space is second-countable (that is, has
a countable basis of open sets): Let D be a countable dense set, B the
countable set of open balls with rational radius and center a point of D. Let
U be open, and x € U. Then there is a ball B,(x) C U with r rational, and
we can find some d € D N B, 3(z). Then x € By,/3(d) C By(x) C U, and
By, 3(d) is in B.

Let (U,) be a countable basis for the topology of X, and let g,(x) =
d(z; X \ U,). The monomials ¢gi"*...g" (with the m; integers) form a
countable set (hy,) of continuous functions on X, and the vector space they
span is the algebra A generated by the g,. So it suffices to use the Stone-
Weierstrass theorem to conclude A is dense in Cr(X).

The family {g,} separates points: if x # y, we may find an U,, so that
x € Up,y & Uy, and thus g,(x) # 0, g,(y) = 0.

Alternative approach: Bernstein polynomials.

It is a remarkable fact that, for uniform approximation by polynomials
in the unit interval [0, 1], there is an explicit procedure that amounts almost
to “a formula”.



Denote by C;? = Cg_j the binomial coefficient: C’;L = ﬁlj),, 0<j<n.
As we learn in high school:

Y Cli(l—a) T =(z+1-2)" =1, xel0,1]
j=0

We use these terms as coefficients and, for each n > 1, ‘sample’ the
function f € C|0, 1] at equidistant points to define the polynomial B,[f](z):

Zf C”:BJ — )",
Theorem: By|[f] — f uniformly in [0, 1].

Proof. First note that B,[f](0) = f(0), B,[f](1) = f(1). Then, letting
Qnj(T) = C}lxj(l — )", we have:

M:

|qm( )-

S gujla) =1 [f(z) -
j=0

:0

By uniform continuity of f, given € > 0 we may find § > 0 (depending only
on € and f) so that |f(z) — f(£)| < € whenever |z — 2] < 4. So for each
x € [0,1] we split the points Z in [0, 1] into two sets:

N1:{j:1,---,n;\x—%!<5}, Ngz{jzl,...,n;p:—%\Zé},

The sum over N; is easy to estimate:

n

S 15@) — F)@)ans @) < €D anse) = €

JEN, §=0
To estimate the other sum, we need a lemma.

A -
Lemma.zyzo qnj(z)(z — %)2 — w < ﬁ'

Assuming the lemma, with |f(z)| < M in [0, 1] we have:

n _l 2 M
Z |f(z ( z)|gn;(x) < 2M]Z_%qnj($) & 52n) < 2142 <6

JEN2

provided n > M/26%. This concludes the proof.



Proof of Lemma. Expanding (x — %)2, we see it is enough to compute:

n—1
)= goj(x) =
§=0

using (j/n)C} = C;-L__llz

n—1
ang == ﬂfz Tl T (1=a) DT = 2y " g gy(z) =
k=0

n

n n— .7 T o n n—
Bn[fUQ](fU):Z(nC])xﬂ(l z) J(n EZ] DCP el (1—z) (D=0 +2
]:0 ]:1
xQ - n—2,.j— n—=2—(j— x 1
:n(”—l)jggcj—;l‘] 21— a0 2)+E:m2+ﬁm(1—:ﬂ).

Remark 1. Note that this computes the Bernstein polynomials of 1, z, 2.
In particular, 1 and x are eigenfunctions of the linear operator By, in C[0, 1],
with eigenvalue 1.

Exercise 3. Do the calculation that completes the proof of the Lemma.

Exercise 4. Show that f(z) = z(1 — z) is an eigenfunction of the
linear operator B, in C[0, 1], with eigenvalue A = (n — 1)/n. (This means

Exercise 5. Compute B,[f](z) for f(z) = /x and n = 1,2,3,4, and
plot them in [0, 1].

Remark 2. The following is sometimes called Fundamental Theorem on
Approximation in Normed Vector spaces: If V is a finite-dimensional vector
space of a normed vector space F, then for every f € E there exists at
least one best approximation p € V. (For example, E = C%([0,1]), V the
subspace of real-valued polynomials of degree n, restricted to [0, 1]).

The theorem follows from the fact that V' is closed in E, soif f € E\V
the distance d(f, V) = inf{||f —p||; p € V'} is positive, and attained by some
vector p € V. (By a previous exercise.)

Remark 3. We have the following quantitative error estimate for approx-
imation by B,[f] in Cg[0, 1]:

1f = Bulflll < Jeop(—).
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Here wy is the modulus of continuity of the continuous function f:

wy(6) = sup{|f(x) = fF(W)|; |z —y[ < 6,2,y € [0,1]}.

For example, if f is Holder continuous with exponent o € (0,1): wys(d) <
Ko™,



