SPACES OF CONTINUOUS FUNCTIONS

If X is a set and F' a normed vector space, the set Bp(X) of bounded
functions from X to F', with the supremum norm, is also a normed vector
space. (And a Banach space, if ' is a Banach space.)

For X a metric space, denote by C%(X) C Bp(X) the set of continuous
bounded functions from X to F. With the sup norm that’s also a normed
vector space. (And a Banach space, if F' is a Banach space.)

Proposition 1. C%(X) is a closed subspace of Br(X); that is, the uniform
limit of continuous bounded functions is continuous.

Proof. Suppose f, — f uniformly in X. Let 9 € X. Given € > 0,
choose N large enough so that supy |fx — f| < €, then a neighborhood V
of xo so that |fy(z) — fa(xo)| < e for all x € V. Now note that, for each
zeV:

[f (@) = fzo)| < [fn(@) = fl2)|+ | fn () = [ (@o)| + | fn (o) — f(wo)| < 3e.

It is easy to give examples of sequences of continuous functions converg-
ing non-uniformly to a continuous function. However, this can’t happen for
monotone sequences on compact spaces:

Dini’s theorem. Let X be a compact metric space. If an increasing (or
decreasing) sequence ( f,,) of continuous real-valued functions on X converges
to a continuous function f, then the convergence is uniform.

Proof. Given € > 0 and z € X we may find an integer n(x) so that
f = fa(z) < € By continuity, we may find a neighborhood V' (z) of z in X so
that |f(z) — f(y)| < eand [f)n(z)(z) — fr@)(y)| <€ for all y € V(x). Then
for each y € V(x) we have f(y) — fu@) (y) < 3e. Take a finite sub cover
of {V(z)}zex and the maximum N of the n(z;). Then for each n > N we
have f(y) — fn(y) < f(y) = fu@n)(y) < 3¢, if y € V(). Since the V(x;)
cover X, this ends the proof.

Question. What goes wrong in this proof if the sequence is not mono-
tone?

Stone-Weierstrass approximation theorem.

Let A be a vector space over R. A is an algebra (or: commutative
algebra with unit) if there exists a ‘multiplication operation’ A x A — A,
(f,g) — fx*g which is bilinear (linear in f and g), commutative (fxg = g*f)
and there is an element 1 € A (the ‘unit’) satisfying fx1 = 1% f = f for



all f € A. A subalgebra of A is a vector subspace of A which is closed under
the multiplication operation and contains the unit.

For any metric space X, the space C%(X ) of continuous, bounded real-
valued functions on X is an algebra over the field of real numbers (with the
operation of pointwise multiplication), satisfying, for the uniform norm:

£l < 11 f111gll-

The unit is the constant function 1.

Exercise 1. Use this to show that the closure A of any subalgebra of
C%(X) is also a subalgebra. Hint: recall A is the set of functions in C%(X)
which are uniform limits of functions in A. Given f = lim f,,,g = limg,,
the main point is checking that fg = lim(f,g,). Estimate |fg — fngn|(x) in
the natural way.

Definition. We say a sub algebra of C%(X ) separates points if Vr # y in
X we may find f € A with f(x) # f(y).

Ezample. The polynomial functions in one variable (with real coeffi-
cients) form a subalgebra of C%([0,1]). The polynomial functions in n real
variables form a subalgebra of C%([0,1]"). Both of these separate points.

The polynomials in one variable made up of even-degree monomials also
form a subalgebra of C%([—1,1]), which doesn’t separate points (any such
polynomial takes the same value at 1 and —1).

Interpolation property. Assume A C C’%(X ) is a subalgebra that sepa-
rates points. For all  # y in X and all real numbers a, b, there exists f € A

so that f(x) = a, f(y) = b.
By assumption we know there exists g € A so that g(z) # g(y). Set:

9 —9(x)
=t by gy
(Note that adding a constant to an element of A yields another element of
A, since the unit (the constant function 1) is in A.)
Stone- Weierstrass theorem. Let X be a compact metric space, A C
Cr(X) a subalgebra containing the constants and separating points. Then
A is dense in the Banach space Cr(X).

Main Lemma. The pointwise max and the pointwise min of finitely many
functions in A is still in A.

We first give the proof of the theorem assuming the main lemma, then
prove the lemma. There are two steps:



Step 1. Given f € Cr(X),z € X and € > 0, we find g, € A so that
g9(z) = f(z) and g.(y) < f(y) +¢, for all y € X.
Step 2. Using compactness, argue there are finitely many points z1,...,xxy €
X so that p(r) = max{gs, (7),...,gzy(z)} (which is in A, by the main
lemma) satisfies:
fy) —e<oly) < fly) +e

for all y € X. Thus for any € > 0 we may find gp € A so that ||f — ¢|| < €
(uniform norm). So f € A.

Step 1. For each f € Cr(X), each x € X and any e > 0, there exists a
function g € A so that g(z) = f(z) and g(y) < f(y) + ¥y € X.

Proof. Given z € X with z # x, let h, € A satisfy h,(z) = f(x) and
h:(z) = f(2) + €/2 (from the interpolation property.) By continuity, there
is an open neighborhood V, of z in X so that, for each y € V, we have
h:(y) < f(y) + €. These define an open cover {V,},cx of X. Taking a
finite subcover {V,}X, of X, we find (from the Main Lemma) the function
g=min{h,|i =1,...,N} is in A and satisfies the conditions required.

Proof of Step 2.

Let f € Cr(X) be arbitrary Given ¢ > 0 and = € X, let g, € A be
the function from Step 1. By continuity there is a neighborhood U(z) of x
in X so that g»(y) > f(y) — € for y € U(x). Cover X by a finite number
of neighborhoods U(xz;), i = 1,..., N. Then (from the Main Lemma) the
function ¢ = max(g,,) is in A and satisfies f(y) — e < p(y) < f(y) + €.

Proof of the Main Lemma.

Step 1. There exists a sequence (u,) of real polynomials approximating
v/t uniformly in [0, 1].

Define u,, by recurrence, letting u; = 0 and setting:

1 (6) = unt) + 5 (1~ ua(1)?).

We show by induction that wu,+1 > u, and u,(t) < v/t in [0,1]. It follows
from the recursion relation that the first fact follows from the second. On
the other hand,

Vi =t (8) = Vi = ualt) = 50— u2(0)) = (V= ()1 = 5 (Vi + n (1)

and from u,(t) < v/t it follows that the second factor is positive. Thus we
have pointwise convergence of u,, to /¢ (from the recurrence relation), and
then uniform convergence follows from Dini’s theorem.



Step 2. If f € A, then |f| € A, the closure of A in Cr(X).

Let a = ||f|| (sup norm). The function f2/a? is in A (since A is an
algebra) and takes values in [0,1]. If w,(¢) are the functions from Step 1,
the compositions u, o (f2/a?) are in A (again since A is an algebra), and
converge uniformly to |f|/a.

Step 3. If f,g € A, then max{f, g}, min{f, g} are also in A.

max{f.g} = 3(f + g+ 1f —gl), min{f,g} = 5(f+9-1f — g)).

Step 4 (final). The pointwise max and the pointwise min of finitely many
functions in A is still in A: follows from Step 3, since minimizing over a finite
set amounts to a finite number of pair comparisons.

Remark. The theorem is false for subalgebras of C¢(X) (complex-valued
functions). This follows from the classical result in Complex Analysis:

Let f,, : D — C be a sequence of complex analytic functions in a domain
D c C. Suppose f, — [ uniformly on compact subsets of D. Then f: D —
C is analytic in D.

Corollary 1. (Polynomials in R™.) Any real-valued continuous function
on a compact subset of R™ is the uniform limit of a sequence of polynomials.

Corollary 2. (Separability.) If X is a compact metric space, the space
Cr(X) is separable.

Let (U,) be a countable basis for the topology of X, and let g,(z) =
d(z; X \ Up). The monomials gi"* ...g" (with the m; integers) form a
countable set (h,) of continuous functions on X, and the vector space they
span is the algebra A generated by the g,. So it suffices to use the Stone-
Weierstrass theorem to conclude A is dense in Cr(X).

The family {g,} separates points: if x # y, we may find an U, so that
x € Up,y & Up, and thus g,(z) # 0,9,(y) = 0.

Alternative approach: approximation by Bernstein polynomi-
als.
Cultural Remark 2: Neural Networks.



Remark. A metric space X is precompact if for all € > 0 a finite number
of balls with diameter e suffices to cover X. The following three conditions
are equivalent for a metric space: (i) X is compact; (ii) X is sequentially
compact (any infinite sequence has an accumulation point.) (iii) X is pre-
compact and complete.

A precompact metric space X is separable. Indeed for each n there is a
finite set A, so that, for each x € X, d(z,A,) < 1/n. Then A = U, A, is
countable, and it is easy to see that A = X.

Equicontinuous sets. Let X be a metric space, £ a normed vector
space. A family (subset) H C Bg(X) of the set of bounded functions f :
X — FE is equicontinuous at xo € X if (Ve > 0)(36 > 0)(Vf € H)(d(x,x0) <
6= [f(x) = f(zo)| <€)

H is equicontinuous if it is equicontinuous at every point of X. For
example, families of functions satisfying a uniform Lipschitz (or Holder)
condition on X are equicontinuous.

1. If (fn) C Bg(X) converges pointwise in X to a function g € Bg(X),
and is equicontinuous at xg € X, then g is continuous at x.

2. If E is a Banach space, (f,,) C C%(X) an equicontinuous sequence,
and f,(x) — g(z) pointwise for x in a dense subset D C X, then f, — g
pointwise on X. (Since F is complete, it suffices to show (f,,) is Cauchy on
X.)

3. If X is compact metric, (f,) C Cg(X) is equicontinuous and f, — g
pointwise in X, then f,, — g uniformly in X.

Ascoli’s theorem. Let X be a compact metric space, I a Banach space.
For a family H C Cg(X) to be relatively compact, the following conditions
are necessary and sufficient: (i) H is equicontinuous; (ii) for each x € X, the
set H(x) = {f(z); f € H} is relatively compact in E. (That is, its closure
is compact; if E is finite-dimensional, this just means H(x) is bounded, for
each z € X. )

Remark. A relatively compact set is precompact; the converse is true in
a complete metric space.

Proof of Ascoli’s theorem.

(i) Necessity. If H is relatively compact, for each € > 0 there exist a finite
number of functions f; € H so that for each f € H we have || f—fi|| < €| (sup
norm), for some i. Thus for each x € X we have |f(x)— fi(z)| < ¢, so the set
H(z) C E is precompact, and (since F is complete) also relatively compact.



Let z € X and V(x) be a neighborhood of x so that |f;(x) — fi(y)| for each
y € V(z), and all . If follows that if y € V(x) we have |f(x) — f(y)| < 3e
for each f € H, so H is equicontinuous.

(i1) Sufficiency. Since Cg(X) is complete, it suffices to show H is pre-
compact.

Given € > 0, for each x € X let V(x) be a neighborhood so that |f(z) —
f(y)] < e foreach f € H andy € V(x). Take a finite sub covering V' (z;),i =
1,...,n. The set J = U {f(z;); f € H} is (by hypothesis) relatively
compact, hence precompact; so there is a finite subset K = {c1,..., ¢y} of
J so that each element of J is e-close to some element of K.

We have to exhibit a covering of H by finitely many subsets of diameter
at most €. For each function ¢ : {1,...,n} — {1,...,m} let L, be the set
of all f € H such that |f(z;) — c,;| < €. Some sets L, may be empty, but
they certainly cover H, and there are only finitely many of them. We have
to check the L, have small diameter.

Let f,g € L, for some function ¢ as above. Then if y € X, there is an
xiy i =1,...nsothat y € V(x;), so |f(y) — f(zi)] < eand |g(y) —g(x;)| <e.
On the other hand, f(x;) — c ;)| < € and [g(w;) — cy()| < € so in the end
we have |f(y) — g(y)| < 4e for each i, or ||f — g|| < 4e (sup norm.)



