
SPACES OF CONTINUOUS FUNCTIONS
If X is a set and F a normed vector space, the set BF (X) of bounded

functions from X to F , with the supremum norm, is also a normed vector
space. (And a Banach space, ifF is a Banach space.)

For X a metric space, denote by Cb
F (X) ⊂ BF (X) the set of continuous

bounded functions from X to F . With the sup norm that’s also a normed
vector space. (And a Banach space, if F is a Banach space.)

Proposition 1. Cb
F (X) is a closed subspace of BF (X); that is, the uniform

limit of continuous bounded functions is continuous.

Proof. Suppose fn → f uniformly in X. Let x0 ∈ X. Given ε > 0,
choose N large enough so that supX |fN − f | ≤ ε, then a neighborhood V
of x0 so that |fN (x) − fN (x0)| ≤ ε for all x ∈ V . Now note that, for each
x ∈ V :

|f(x)− f(x0)| ≤ |fN (x)− f(x)|+ |fN (x)− fN (x0)|+ |fN (x0)− f(x0)| ≤ 3ε.

It is easy to give examples of sequences of continuous functions converg-
ing non-uniformly to a continuous function. However, this can’t happen for
monotone sequences on compact spaces:

Dini’s theorem. Let X be a compact metric space. If an increasing (or
decreasing) sequence (fn) of continuous real-valued functions onX converges
to a continuous function f , then the convergence is uniform.

Proof. Given ε > 0 and x ∈ X we may find an integer n(x) so that
f − fn(x) ≤ ε. By continuity, we may find a neighborhood V (x) of x in X so
that |f(x)− f(y)| ≤ ε and |f)n(x)(x)− fn(x)(y)| ≤ ε, for all y ∈ V (x). Then
for each y ∈ V (x) we have f(y) − fn(x)(y) ≤ 3ε. Take a finite sub cover
of {V (x)}x∈X and the maximum N of the n(xi). Then for each n ≥ N we
have f(y) − fN (y) ≤ f(y) − fn(xi)(y) ≤ 3ε, if y ∈ V (xi). Since the V (xi)
cover X, this ends the proof.

Question. What goes wrong in this proof if the sequence is not mono-
tone?

Stone-Weierstrass approximation theorem.
Let A be a vector space over R. A is an algebra (or: commutative

algebra with unit) if there exists a ‘multiplication operation’ A × A → A,
(f, g) 7→ f ∗g which is bilinear (linear in f and g), commutative (f ∗g = g∗f)
and there is an element 1 ∈ A (the ‘unit’) satisfying f ∗ 1 = 1 ∗ f = f for
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all f ∈ A. A subalgebra of A is a vector subspace of A which is closed under
the multiplication operation and contains the unit.

For any metric space X, the space Cb
R(X) of continuous, bounded real-

valued functions on X is an algebra over the field of real numbers (with the
operation of pointwise multiplication), satisfying, for the uniform norm:

||fg|| ≤ ||f ||||g||.

The unit is the constant function 1.

Exercise 1. Use this to show that the closure Ā of any subalgebra of
Cb
R(X) is also a subalgebra. Hint: recall Ā is the set of functions in Cb

R(X)
which are uniform limits of functions in A. Given f = lim fn, g = lim gn,
the main point is checking that fg = lim(fngn). Estimate |fg − fngn|(x) in
the natural way.

Definition. We say a sub algebra of Cb
R(X) separates points if ∀x 6= y in

X we may find f ∈ A with f(x) 6= f(y).

Example. The polynomial functions in one variable (with real coeffi-
cients) form a subalgebra of Cb

R([0, 1]). The polynomial functions in n real
variables form a subalgebra of Cb

R([0, 1]n). Both of these separate points.
The polynomials in one variable made up of even-degree monomials also

form a subalgebra of Cb
R([−1, 1]), which doesn’t separate points (any such

polynomial takes the same value at 1 and −1).

Interpolation property. Assume A ⊂ Cb
R(X) is a subalgebra that sepa-

rates points. For all x 6= y in X and all real numbers a, b, there exists f ∈ A
so that f(x) = a, f(y) = b.

By assumption we know there exists g ∈ A so that g(x) 6= g(y). Set:

f = a+ (b− a)
g − g(x)

g(y)− g(x)
.

(Note that adding a constant to an element of A yields another element of
A, since the unit (the constant function 1) is in A.)

Stone-Weierstrass theorem. Let X be a compact metric space, A ⊂
CR(X) a subalgebra containing the constants and separating points. Then
A is dense in the Banach space CR(X).

Main Lemma. The pointwise max and the pointwise min of finitely many
functions in Ā is still in Ā.

We first give the proof of the theorem assuming the main lemma, then
prove the lemma. There are two steps:
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Step 1. Given f ∈ CR(X), x ∈ X and ε > 0, we find gx ∈ Ā so that
g(x) = f(x) and gx(y) ≤ f(y) + ε, for all y ∈ X.

Step 2. Using compactness, argue there are finitely many points x1, . . . , xN ∈
X so that ϕ(x) = max{gx1(x), . . . , gxN (x)} (which is in Ā, by the main
lemma) satisfies:

f(y)− ε ≤ ϕ(y) ≤ f(y) + ε,

for all y ∈ X. Thus for any ε > 0 we may find gϕ ∈ Ā so that ||f − ϕ|| ≤ ε
(uniform norm). So f ∈ Ā.

Step 1. For each f ∈ CR(X), each x ∈ X and any ε > 0, there exists a
function g ∈ Ā so that g(x) = f(x) and g(y) ≤ f(y) + ε∀y ∈ X.

Proof. Given z ∈ X with z 6= x, let hz ∈ Ā satisfy hz(x) = f(x) and
hz(z) = f(z) + ε/2 (from the interpolation property.) By continuity, there
is an open neighborhood Vz of z in X so that, for each y ∈ Vz we have
hz(y) ≤ f(y) + ε. These define an open cover {Vz}z∈X of X. Taking a
finite subcover {Vzi}Ni=1 of X, we find (from the Main Lemma) the function
g = min{hzi |i = 1, . . . , N} is in Ā and satisfies the conditions required.

Proof of Step 2.
Let f ∈ CR(X) be arbitrary Given ε > 0 and x ∈ X, let gx ∈ Ā be

the function from Step 1. By continuity there is a neighborhood U(x) of x
in X so that gx(y) ≥ f(y) − ε for y ∈ U(x). Cover X by a finite number
of neighborhoods U(xi), i = 1, . . . , N . Then (from the Main Lemma) the
function ϕ = max(gxi) is in Ā and satisfies f(y)− ε ≤ ϕ(y) ≤ f(y) + ε.

Proof of the Main Lemma.
Step 1. There exists a sequence (un) of real polynomials approximating√

t uniformly in [0, 1].
Define un by recurrence, letting u1 = 0 and setting:

un+1(t) = un(t) +
1

2
(1− un(t)2).

We show by induction that un+1 ≥ un and un(t) ≤
√
t in [0, 1]. It follows

from the recursion relation that the first fact follows from the second. On
the other hand,

√
t− un+1(t) =

√
t− un(t)− 1

2
(t− u2n(t)) = (

√
t− un(t))(1− 1

2
(
√
t+ un(t))

and from un(t) ≤
√
t it follows that the second factor is positive. Thus we

have pointwise convergence of un to
√
t (from the recurrence relation), and

then uniform convergence follows from Dini’s theorem.
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Step 2. If f ∈ Ā, then |f | ∈ Ā, the closure of A in CR(X).
Let a = ||f || (sup norm). The function f2/a2 is in Ā (since Ā is an

algebra) and takes values in [0, 1]. If un(t) are the functions from Step 1,
the compositions un ◦ (f2/a2) are in Ā (again since A is an algebra), and
converge uniformly to |f |/a.

Step 3. If f, g ∈ A, then max{f, g},min{f, g} are also in Ā.

max{f, g} =
1

2
(f + g + |f − g|), min{f, g} =

1

2
(f + g − |f − g|).

Step 4 (final). The pointwise max and the pointwise min of finitely many
functions in Ā is still in Ā: follows from Step 3, since minimizing over a finite
set amounts to a finite number of pair comparisons.

Remark. The theorem is false for subalgebras of CC(X) (complex-valued
functions). This follows from the classical result in Complex Analysis:

Let fn : D → C be a sequence of complex analytic functions in a domain
D ⊂ C. Suppose fn → f uniformly on compact subsets of D. Then f : D →
C is analytic in D.

Corollary 1. (Polynomials in Rn.) Any real-valued continuous function
on a compact subset of Rn is the uniform limit of a sequence of polynomials.

Corollary 2. (Separability.) If X is a compact metric space, the space
CR(X) is separable.

Let (Un) be a countable basis for the topology of X, and let gn(x) =
d(x;X \ Un). The monomials gm1

1 . . . gmr
r (with the mj integers) form a

countable set (hn) of continuous functions on X, and the vector space they
span is the algebra A generated by the gn. So it suffices to use the Stone-
Weierstrass theorem to conclude A is dense in CR(X).

The family {gn} separates points: if x 6= y, we may find an Un so that
x ∈ Un, y 6∈ Un, and thus gn(x) 6= 0, gn(y) = 0.

Alternative approach: approximation by Bernstein polynomi-
als.

Cultural Remark 2: Neural Networks.
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Remark. A metric space X is precompact if for all ε > 0 a finite number
of balls with diameter ε suffices to cover X. The following three conditions
are equivalent for a metric space: (i) X is compact; (ii) X is sequentially
compact (any infinite sequence has an accumulation point.) (iii) X is pre-
compact and complete.

A precompact metric space X is separable. Indeed for each n there is a
finite set An so that, for each x ∈ X, d(x,An) ≤ 1/n. Then A = ∪nAn is
countable, and it is easy to see that Ā = X.

Equicontinuous sets. Let X be a metric space, E a normed vector
space. A family (subset) H ⊂ BE(X) of the set of bounded functions f :
X → E is equicontinuous at x0 ∈ X if (∀ε > 0)(∃δ > 0)(∀f ∈ H)(d(x, x0) ≤
δ ⇒ |f(x)− f(x0)| ≤ ε).

H is equicontinuous if it is equicontinuous at every point of X. For
example, families of functions satisfying a uniform Lipschitz (or Hölder)
condition on X are equicontinuous.

1. If (fn) ⊂ BE(X) converges pointwise in X to a function g ∈ BE(X),
and is equicontinuous at x0 ∈ X, then g is continuous at x0.

2. If E is a Banach space, (fn) ⊂ Cb
E(X) an equicontinuous sequence,

and fn(x) → g(x) pointwise for x in a dense subset D ⊂ X, then fn → g
pointwise on X. (Since E is complete, it suffices to show (fn) is Cauchy on
X.)

3. If X is compact metric, (fn) ⊂ CE(X) is equicontinuous and fn → g
pointwise in X, then fn → g uniformly in X.

Ascoli’s theorem. Let X be a compact metric space, E a Banach space.
For a family H ⊂ CE(X) to be relatively compact, the following conditions
are necessary and sufficient: (i) H is equicontinuous; (ii) for each x ∈ X, the
set H(x) = {f(x); f ∈ H} is relatively compact in E. (That is, its closure
is compact; if E is finite-dimensional, this just means H(x) is bounded, for
each x ∈ X. )

Remark. A relatively compact set is precompact; the converse is true in
a complete metric space.

Proof of Ascoli’s theorem.
(i) Necessity. If H is relatively compact, for each ε > 0 there exist a finite

number of functions fi ∈ H so that for each f ∈ H we have ||f−fi|| ≤ ε|| (sup
norm), for some i. Thus for each x ∈ X we have |f(x)−fi(x)| ≤ ε, so the set
H(x) ⊂ E is precompact, and (since E is complete) also relatively compact.
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Let x ∈ X and V (x) be a neighborhood of x so that |fi(x)− fi(y)| for each
y ∈ V (x), and all i. If follows that if y ∈ V (x) we have |f(x) − f(y)| < 3ε
for each f ∈ H, so H is equicontinuous.

(ii) Sufficiency. Since CE(X) is complete, it suffices to show H is pre-
compact.

Given ε > 0, for each x ∈ X let V (x) be a neighborhood so that |f(x)−
f(y)| < ε, for each f ∈ H and y ∈ V (x). Take a finite sub covering V (xi), i =
1, . . . , n. The set J = ∪ni=1{f(xi); f ∈ H} is (by hypothesis) relatively
compact, hence precompact; so there is a finite subset K = {c1, . . . , cm} of
J so that each element of J is ε-close to some element of K.

We have to exhibit a covering of H by finitely many subsets of diameter
at most ε. For each function ϕ : {1, . . . , n} → {1, . . . ,m} let Lϕ be the set
of all f ∈ H such that |f(xi)− cϕ(i)| < ε. Some sets Lϕ may be empty, but
they certainly cover H, and there are only finitely many of them. We have
to check the Lϕ have small diameter.

Let f, g ∈ Lϕ, for some function ϕ as above. Then if y ∈ X, there is an
xi, i = 1, . . . n so that y ∈ V (xi), so |f(y)− f(xi)| ≤ ε and |g(y)− g(xi)| < ε.
On the other hand, f(xi) − cϕ(i)| ≤ ε and |g(xi) − cϕ(i)| ≤ ε; so in the end
we have |f(y)− g(y)| ≤ 4ε for each i, or ||f − g|| ≤ 4ε (sup norm.)
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