
DEFINITIONS AND THEOREMS IN GENERAL TOPOLOGY

1. Basic definitions.
A topology on a set X is defined by a family O of subsets of X, the open

sets of the topology, satisfying the axioms: (i) ∅ and X are in O; (ii) the
intersection of finitely many sets in O is in O; (iii) arbitrary unions of sets
in O are in O.

Alternatively, a topology may be defined by the neighborhoods U(p) of
an arbitrary point p ∈ X, where p ∈ U(p) and, in addition:

(i) If U1, U2 are neighborhoods of p, there exists U3 neighborhood of p,
such that U3 ⊂ U1 ∩ U2;

(ii) If U is a neighborhood of p and q ∈ U , there exists a neighborhood
V of q so that V ⊂ U .

A topology is Hausdorff if any distinct points p 6= q admit disjoint neigh-
borhoods. This is almost always assumed.

A set C ⊂ X is closed if its complement is open. The closure Ā of a set
A ⊂ X is the intersection of all closed sets containing X. A subset A ⊂ X
is dense in X if Ā = X.

A point x ∈ X is a cluster point of a subset A ⊂ X if any neighborhood
of x contains a point of A distinct from x. If A′ denotes the set of cluster
points, then Ā = A ∪A′.

A map f : X → Y of topological spaces is continuous at p ∈ X if for
any open neighborhood V ⊂ Y of f(p), there exists an open neighborhood
U ⊂ X of p so that f(U) ⊂ V . f is continuous if it is continuous at every
point; equivalently, if the preimage f−1(V ) of each open set V ⊂ Y is open
in X.

A family F of open sets is a basis for a topology if any open set is a
union of sets in F ; a local basis at a point p ∈ X if any neighborhood of p is
contained in a set in F .

A topology is second-countable if it admits a countable basis; first-
countable if it has a countable local basis at each point; separable if X
has a countable dense set. Second-countable spaces are separable, but not
conversely.

A topological vector space (TVS) is a vector space E (over R, say) en-
dowed with a topology so that (i) {0} is a closed set (this guarantees Haus-
dorff); (ii) the vector space operations (x, y) 7→ x + y and (λ, x) 7→ λx are
continuous.
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Hierarchy of separation properties. Not every Hausdorff space admits
non-constant continuous functions to the unit interval. A Hausdorff space
X is completely regular if given p ∈ X,A ⊂ X closed with p 6∈ A, there
exists a continuous function f : X → [0, 1] so that f(p) = 0 and f ≡ 1
in A. A weaker condition is regular: p,A as before admit disjoint open
neighborhoods.

X (Hausdorff) is normal if any disjoint closed sets admit disjoint open
neighborhoods. Equivalently (Urysohn) given A,B ⊂ X disjoint closed sets,
there exists f : X → [0, 1] continuous so that f ≡ 0 in A, f ≡ 1 in B. Thus
normal spaces are completely regular.

To get f−1(0) = A we must require A to be aGδ: a countable intersection
of open sets. A normal space in which each closed set is a Gδ is called
perfectly normal.

Another equivalent condition to normality (Tietze) is that given A ⊂ X
closed and f : A → R continuous with |f(a)| ≤ M in A, there exists a
continuous extension of f to X, satisfying |f(x)| ≤M in X.

Covering properties. A Hausdorff space is paracompact if every open
covering has an open locally finite finite refinement.

Thm. Every paracompact space is normal. [D, p. 163]
Thm. Let Y be paracompact. For each open covering of Y , there is a

partition of unity subordinate to it.[D, p. 170]
A Hausdorff space is Lindelöf if every open covering contains a countable

subcovering. (Note that a subcovering is a very special type of refinement.)
Lindelöf ’s theorem. Every second-countable space is Lindelöf. (The

converse is false.)[ D, p. 174]
Morita’s theorem. Regular+Lindelöf ⇒ paracompact. [D, p. 174]
Theorem. Separable + paracompact ⇒ Lindelöf. [D, p. 177]
Definition. A subset A ⊂ X of a Hausdorff space is compact if any open

covering of A admits a finite subcovering. Clearly every compact space is
paracompact (hence also normal). It is easy to see that if f : X → Y is
continuous and A ⊂ X is compact, then f(A) is compact in Y .

A metric space (or a normed vector space) is complete if Cauchy se-
quences converge. A Banach space is a complete normed vector space. A
Fréchet space is a complete, locally convex vector space with a translation-
invariant metric.

2. Metric spaces. Every metric space is perfectly normal: normal, and
each closed set is a Gδ (i.e. a countable intersection of open sets.) [D, p.
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186] (Just take the distance function to a closed set).
Every metric space is first-countable. (The open balls at p with rational

radius give a local basis at p.)
A.H.Stone’s theorem. Every metric space is paracompact. [D, p. 186]
Theorem. A metric space is second countable iff it is separable iff it is

Lindelöf. [D, p. 186]
Nagata-Smirnov therem. A topological space is metrizable if and only if

it is regular and admits a basis which can be decomposed into a countable
union of locally finite families of open sets. [D, p. 194]

A consequence is Urysohn’s theorem. Any second-countable regular
space is metrizable.[ D, p. 195]

A topological vector space E is metrizable if (and, as is clear, only if)
E is first-countable. In this case the metric can be taken invariant under
addition (d(x + z, y + z) = d(x, y)) and open balls at the origin balanced:
x ∈ B, |λ| ≤ 1 ⇒ λx ∈ B. If X is locally convex (admits a local basis at
0 consisting of convex sets), then d can be taken to satisfy open balls are
convex. [R, p. 18]

Remark. In a TVS E with topology given by a (translation-invariant)
metric d, there are two notions of “bounded” (for a subset A ⊂ E): the usual
one defined by the metric, and the following: for each open neighborhood V
of 0 in E , one may find λ ∈ R so that A ⊂ λV . If A ⊂ E is bounded in this
sense, it is d-bounded (exercise) , but not conversely. (Indeed the metric
d1 = d/(1 + d) defines the same topology, and the whole space E is d1-
bounded). Usually for a general TVS one takes the more general (stronger)
definition of ‘bounded’.

A topological vector space is normable (topology may be given by a
norm) iff it is locally convex and locally bounded (i.e. 0 has a bounded
neighborhood U , meaning for every neighborhood V of 0 there exists a
t > 0 so that U ⊂ sV for all s > t.) [R, p. 28]. Note that ‘locally bounded’
implies ‘first countable’ (for topological vector spaces): if V is a bounded
neighborhood of 0 and rn → 0, {rnV } gives a countable basis at 0. [R, p.15]

3. Convergence. A sequence (xn)n≥1 in a space Y converges to y0 ∈ Y
if ∀U(y0) the (xn) are eventually in U(y0); the sequence accumulates at y0
if ∀U(y0) the xn are in U(y0) for arbitrarily large n.

Adequacy of sequences. Let Y be (Hausdorff and) first countable. Then
a sequence (xn)in Y accumulates at y0 iff some subsequence converges to y0.

Let Y be first-countable, A ⊂ Y . Then x ∈ Ā iff there exists a sequence
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in A converging to x. (Recall Ā = {x|∀U(x), U(x) ∩A 6= ∅}.)
If X is first-countable, f : X → Y continuous (Y arbitrary), f is contin-

uous at x0 iff f(xn)→ f(x0), for all sequences xn → x0.

4. Compactness. Def. A Hausdorff space is compact if every open
covering admits a finite subcovering. Clearly every compact space is para-
compact (hence also normal.) It is easy to show that the image of a compact
set under a continuous map is compact.

A compact subset A of a Hausdorff space X is always closed. Indeed if
x0 6∈ A, for each a ∈ A find disjoint neighborhoods U(a), Ua(x0). Taking a
finite subcover {U(ai)}, we have

⋃
i U(ai) and

⋂
i Uai(x0) are disjoint open

neighborhoods of A and x0.

Theorem. If Y is a compact space and f : Y → R is continuous, then f
attains its supremum and its infimum, and both are finite [D, p. 227].

A corollary of this is the fact that in a metric space (Y, d), any compact
subset A is (closed and) bounded. Just apply the theorem to the function
d(a, a0), where a0 ∈ A.

In Rn we have the Heine-Borel property: A closed and bounded subset
of Rn is compact.

If a locally bounded topological vector space E has the Heine-Borel prop-
erty, then it is locally compact, hence finite-dimensional. (See below). In-
deed, 0 ∈ E has a bounded neighborhood V , and its closure V̄ is also
bounded (true in any TVS), hence compact if we assume Heine-Borel holds.

However, not every TVS with the Heine-Borel property is finite-dimensional.
An example [R, p.33] is the space C∞(Ω), (Ω ⊂ Rn open): the topology of
uniform convergence of finitely many derivatives on compact subsets K ⊂ Ω
is metrizable, and the resulting Fréchet space structure does have the Heine-
Borel property. (Hence it is not locally bounded.)

Lebesgue number. In a compact metric space (Y, d), if {Uα} is an open
covering, there exists a number λ > 0 so that each ball B(y, λ) is contained
in some Uα [D, p. 234]. A consequence is the fact that continuous maps
from compact metric spaces are uniformly continuous.

Def. A Hausdorff space is sequentially compact if every countable open
covering admits a finite subcovering.
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Clearly compact implies countably compact; but not conversely.
Theorem. The following are equivalent (for a Hausdorff space Y ) [D,

p.229]:
(1) Y is countably compact;
(2) Every countably infinite set subset S ⊂ Y has at least one cluster

point y0 (i.e. ∀U(y0), U(y0) ∩ S 6= ∅.)
(3) Every sequence in Y has an accumulation point (Bolzano-Weierstrass

property.)

Theorem. (paracompact or Lindelöf)+sequentially compact⇒ compact.[D,
p.230]

Theorem. first-countable+ countably compact⇒ regular. [D, p.230]

Local compactness. A Hausdorff space is locally compact if each point
has a relatively compact neighborhood (its closure is compact). In a TVS,
it is enough to require that 0 has a relatively compact neighborhood.

Every locally compact space is completely regular [D, p. 239]

Any locally compact TVS is finite-dimensional [R, p.18].

Theorem. [D, p.241] The following conditions are equivalent:
(1) Y is Lindelöf and locally compact;
(2) Y is a countable union of compact spaces (i.e. σ-compact);
(3) Y admits an increasing exhaustion by countably many relatively

compact open subsets: Y =
⋃
i Ui with Ūi ⊂ Ui+1.

Baire’s theorem. In a locally compact space, the intersection of a count-
able family of open dense sets is dense. [D, p. 249].

5. Completeness and Category.

Def. A subset A ⊂ X of a metric space is precompact (or totally bounded)
if, for any ε > 0, A can be covered by finitely many balls of radius at most
ε.

Theorem. A metrizable space Y is compact iff it has a metric that is
both complete and precompact. A subset A ⊂ Y of a complete metric space
has compact closure iff it is totally bounded. [D, p. 298].

Baire’s Theorem. Any complete metric space has the Baire property: a
countable intersection of open dense sets is dense.

Remark: Every locally compact metric space admits a (possibly differ-
ent) complete metric. Furthermore, if Y is compact, every metric on Y is
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complete. [D. p. 294]

REMARK: For a summary, see the diagram in [D, p. 311].
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