DEFINITIONS AND THEOREMS IN GENERAL TOPOLOGY

1. Basic definitions.

A topology on a set X is defined by a family \mathcal{O} of subsets of X, the *open sets* of the topology, satisfying the axioms: (i) \emptyset and X are in \mathcal{O} ; (ii) the intersection of finitely many sets in \mathcal{O} is in \mathcal{O} ; (iii) arbitrary unions of sets in \mathcal{O} are in \mathcal{O} .

Alternatively, a topology may be defined by the neighborhoods U(p) of an arbitrary point $p \in X$, where $p \in U(p)$ and, in addition:

- (i) If U_1, U_2 are neighborhoods of p, there exists U_3 neighborhood of p, such that $U_3 \subset U_1 \cap U_2$;
- (ii) If U is a neighborhood of p and $q \in U$, there exists a neighborhood V of q so that $V \subset U$.

A topology is *Hausdorff* if any distinct points $p \neq q$ admit disjoint neighborhoods. This is almost always assumed.

A set $C \subset X$ is closed if its complement is open. The closure \bar{A} of a set $A \subset X$ is the intersection of all closed sets containing X. A subset $A \subset X$ is dense in X if $\bar{A} = X$.

A point $x \in X$ is a *cluster point* of a subset $A \subset X$ if any neighborhood of x contains a point of A distinct from x. If A' denotes the set of cluster points, then $\bar{A} = A \cup A'$.

A map $f: X \to Y$ of topological spaces is *continuous* at $p \in X$ if for any open neighborhood $V \subset Y$ of f(p), there exists an open neighborhood $U \subset X$ of p so that $f(U) \subset V$. f is *continuous* if it is continuous at every point; equivalently, if the *preimage* $f^{-1}(V)$ of each open set $V \subset Y$ is open in X.

A family \mathcal{F} of open sets is a *basis* for a topology if any open set is a union of sets in \mathcal{F} ; a *local basis* at a point $p \in X$ if any neighborhood of p is contained in a set in \mathcal{F} .

A topology is second-countable if it admits a countable basis; first-countable if it has a countable local basis at each point; separable if X has a countable dense set. Second-countable spaces are separable, but not conversely.

A topological vector space (TVS) is a vector space E (over \mathbb{R} , say) endowed with a topology so that (i) $\{0\}$ is a closed set (this guarantees Hausdorff); (ii) the vector space operations $(x,y)\mapsto x+y$ and $(\lambda,x)\mapsto \lambda x$ are continuous.

Hierarchy of separation properties. Not every Hausdorff space admits non-constant continuous functions to the unit interval. A Hausdorff space X is completely regular if given $p \in X, A \subset X$ closed with $p \notin A$, there exists a continuous function $f: X \to [0,1]$ so that f(p) = 0 and $f \equiv 1$ in A. A weaker condition is regular: p, A as before admit disjoint open neighborhoods.

X (Hausdorff) is normal if any disjoint closed sets admit disjoint open neighborhoods. Equivalently (Urysohn) given $A, B \subset X$ disjoint closed sets, there exists $f: X \to [0,1]$ continuous so that $f \equiv 0$ in $A, f \equiv 1$ in B. Thus normal spaces are completely regular.

To get $f^{-1}(0) = A$ we must require A to be a G_{δ} : a countable intersection of open sets. A normal space in which each closed set is a G_{δ} is called *perfectly normal*.

Another equivalent condition to normality (Tietze) is that given $A \subset X$ closed and $f: A \to \mathbb{R}$ continuous with $|f(a)| \leq M$ in A, there exists a continuous extension of f to X, satisfying $|f(x)| \leq M$ in X.

Covering properties. A Hausdorff space is paracompact if every open covering has an open locally finite finite refinement.

Thm. Every paracompact space is normal. [D, p. 163]

Thm. Let Y be paracompact. For each open covering of Y, there is a partition of unity subordinate to it. [D, p. 170]

A Hausdorff space is *Lindelöf* if every open covering contains a countable *subcovering*. (Note that a subcovering is a very special type of refinement.)

Lindelöf's theorem. Every second-countable space is Lindelöf. (The converse is false.)[D, p. 174]

Morita's theorem. Regular+Lindelöf \Rightarrow paracompact. [D, p. 174]

Theorem. Separable + paracompact \Rightarrow Lindelöf. [D, p. 177]

Definition. A subset $A \subset X$ of a Hausdorff space is *compact* if any open covering of A admits a finite subcovering. Clearly every compact space is paracompact (hence also normal). It is easy to see that if $f: X \to Y$ is continuous and $A \subset X$ is compact, then f(A) is compact in Y.

A metric space (or a normed vector space) is *complete* if Cauchy sequences converge. A *Banach space* is a complete normed vector space. A *Fréchet space* is a complete, locally convex vector space with a translation-invariant metric.

2. Metric spaces. Every metric space is *perfectly normal*: normal, and each closed set is a G_{δ} (i.e. a countable intersection of open sets.) [D, p.

186] (Just take the distance function to a closed set).

Every metric space is first-countable. (The open balls at p with rational radius give a local basis at p.)

A.H.Stone's theorem. Every metric space is paracompact. [D, p. 186] Theorem. A metric space is second countable iff it is separable iff it is Lindelöf. [D, p. 186]

Nagata-Smirnov therem. A topological space is metrizable if and only if it is regular and admits a basis which can be decomposed into a countable union of locally finite families of open sets. [D, p. 194]

A consequence is *Urysohn's theorem*. Any second-countable regular space is metrizable. [D, p. 195]

A topological vector space E is metrizable if (and, as is clear, only if) E is first-countable. In this case the metric can be taken invariant under addition (d(x+z,y+z)=d(x,y)) and open balls at the origin balanced: $x \in B, |\lambda| \le 1 \Rightarrow \lambda x \in B$. If X is locally convex (admits a local basis at 0 consisting of convex sets), then d can be taken to satisfy open balls are convex. [R, p. 18]

Remark. In a TVS E with topology given by a (translation-invariant) metric d, there are two notions of "bounded" (for a subset $A \subset E$): the usual one defined by the metric, and the following: for each open neighborhood V of 0 in E, one may find $\lambda \in \mathbb{R}$ so that $A \subset \lambda V$. If $A \subset E$ is bounded in this sense, it is d-bounded (exercise), but not conversely. (Indeed the metric $d_1 = d/(1+d)$ defines the same topology, and the whole space E is d_1 -bounded). Usually for a general TVS one takes the more general (stronger) definition of 'bounded'.

A topological vector space is normable (topology may be given by a norm) iff it is locally convex and locally bounded (i.e. 0 has a bounded neighborhood U, meaning for every neighborhood V of 0 there exists a t>0 so that $U\subset sV$ for all s>t.) [R, p. 28]. Note that 'locally bounded' implies 'first countable' (for topological vector spaces): if V is a bounded neighborhood of 0 and $r_n\to 0$, $\{r_nV\}$ gives a countable basis at 0. [R, p.15]

3. Convergence. A sequence $(x_n)_{n\geq 1}$ in a space Y converges to $y_0 \in Y$ if $\forall U(y_0)$ the (x_n) are eventually in $U(y_0)$; the sequence accumulates at y_0 if $\forall U(y_0)$ the x_n are in $U(y_0)$ for arbitrarily large n.

Adequacy of sequences. Let Y be (Hausdorff and) first countable. Then a sequence (x_n) in Y accumulates at y_0 iff some subsequence converges to y_0 . Let Y be first-countable, $A \subset Y$. Then $x \in \bar{A}$ iff there exists a sequence

in A converging to x. (Recall $\bar{A} = \{x | \forall U(x), U(x) \cap A \neq \emptyset\}$.)

If X is first-countable, $f: X \to Y$ continuous (Y arbitrary), f is continuous at x_0 iff $f(x_n) \to f(x_0)$, for all sequences $x_n \to x_0$.

4. Compactness. *Def.* A Hausdorff space is *compact* if every open covering admits a finite subcovering. Clearly every compact space is paracompact (hence also normal.) It is easy to show that the image of a compact set under a continuous map is compact.

A compact subset A of a Hausdorff space X is always closed. Indeed if $x_0 \notin A$, for each $a \in A$ find disjoint neighborhoods $U(a), U_a(x_0)$. Taking a finite subcover $\{U(a_i)\}$, we have $\bigcup_i U(a_i)$ and $\bigcap_i U_{a_i}(x_0)$ are disjoint open neighborhoods of A and x_0 .

Theorem. If Y is a compact space and $f: Y \to \mathbb{R}$ is continuous, then f attains its supremum and its infimum, and both are finite [D, p. 227].

A corollary of this is the fact that in a metric space (Y, d), any compact subset A is (closed and) bounded. Just apply the theorem to the function $d(a, a_0)$, where $a_0 \in A$.

In \mathbb{R}^n we have the *Heine-Borel property*: A closed and bounded subset of \mathbb{R}^n is compact.

If a locally bounded topological vector space E has the Heine-Borel property, then it is locally compact, hence finite-dimensional. (See below). Indeed, $0 \in E$ has a bounded neighborhood V, and its closure \bar{V} is also bounded (true in any TVS), hence compact if we assume Heine-Borel holds.

However, not every TVS with the Heine-Borel property is finite-dimensional. An example [R, p.33] is the space $C^{\infty}(\Omega)$, $(\Omega \subset \mathbb{R}^n \text{ open})$: the topology of uniform convergence of finitely many derivatives on compact subsets $K \subset \Omega$ is metrizable, and the resulting Fréchet space structure does have the Heine-Borel property. (Hence it is not locally bounded.)

Lebesgue number. In a compact metric space (Y, d), if $\{U_{\alpha}\}$ is an open covering, there exists a number $\lambda > 0$ so that each ball $B(y, \lambda)$ is contained in some U_{α} [D, p. 234]. A consequence is the fact that continuous maps from compact metric spaces are uniformly continuous.

Def. A Hausdorff space is sequentially compact if every countable open covering admits a finite subcovering.

Clearly compact implies countably compact; but not conversely.

Theorem. The following are equivalent (for a Hausdorff space Y) [D, p.229]:

- (1) Y is countably compact;
- (2) Every countably infinite set subset $S \subset Y$ has at least one cluster point y_0 (i.e. $\forall U(y_0), U(y_0) \cap S \neq \emptyset$.)
- (3) Every sequence in Y has an accumulation point (Bolzano-Weierstrass property.)

Theorem. (paracompact or Lindelöf)+sequentially compact \Rightarrow compact.[D, p.230]

Theorem. first-countable+ countably compact \Rightarrow regular. [D, p.230]

Local compactness. A Hausdorff space is locally compact if each point has a relatively compact neighborhood (its closure is compact). In a TVS, it is enough to require that 0 has a relatively compact neighborhood.

Every locally compact space is completely regular [D, p. 239]

Any locally compact TVS is finite-dimensional [R, p.18].

Theorem. [D, p.241] The following conditions are equivalent:

- (1) Y is Lindelöf and locally compact;
- (2) Y is a countable union of compact spaces (i.e. σ -compact);
- (3) Y admits an increasing exhaustion by countably many relatively compact open subsets: $Y = \bigcup_i U_i$ with $\bar{U}_i \subset U_{i+1}$.

Baire's theorem. In a locally compact space, the intersection of a countable family of open dense sets is dense. [D, p. 249].

5. Completeness and Category.

Def. A subset $A \subset X$ of a metric space is precompact (or totally bounded) if, for any $\epsilon > 0$, A can be covered by finitely many balls of radius at most ϵ .

Theorem. A metrizable space Y is compact iff it has a metric that is both complete and precompact. A subset $A \subset Y$ of a complete metric space has compact closure iff it is totally bounded. [D, p. 298].

Baire's Theorem. Any complete metric space has the Baire property: a countable intersection of open dense sets is dense.

Remark: Every locally compact metric space admits a (possibly different) complete metric. Furthermore, if Y is compact, every metric on Y is

complete. [D. p. 294]

REMARK: For a summary, see the diagram in [D, p. 311].