
LOCALLY COMPACT BANACH SPACES ARE FINITE DIMENSIONAL

1. Hyperplanes and bounded linear functionals.

Basic fact. A linear map L : E → F of normed vector spaces is contin-
uous iff there exists an M > 0 so that |Lv|F ≤ M |v|E , for all v ∈ E. (We
refer to this by saying ‘L is bounded’.)

Proof. If such an M exists, we have |Lv1 − Lv2|F ≤ M |v1 − v2|E . Con-
versely, if L is continuous, there is an r > 0 so that |v|E ≤ r ⇒ |Lv|F ≤ 1
Then for any nonzero v ∈ E we have |L( rv

|v|E )|F ≤ 1, or |Lv|F ≤ 1
r |v|E .

Remark: Any linear map L : Rm → Rn is automatically bounded: for
x = (x1, . . . xm) =

∑m
i=1 x

iei, we have:

||L(x)|| ≤
m∑
i=1

|xi|||L(ei)|| ≤M
∑
i

|xi| ≤M
√
m||x||, where M = max

1≤i≤m
|L(ei)|,

and ||x|| denotes the euclidean norm.

Hyperplanes. A it hyperplane is a subspace H ⊂ E of a (real) vector
space E satisfying, for each a 6∈ H:

E = H ⊕ Ra

(algebraic direct sum).
A ‘linear functional’ on a vector space E is a linear map f : E → R.

There is a general correspondence between hyperplanes and linear function-
als. First, if f is a linear functional, H = ker(f) (the kernel, or nullspace of
f) is a hyperplane.

Exercise 1. Prove this.

In the other direction: given a hyperplane H and a nonzero vector a 6∈ H,
define a linear functional f : E → R by x = h+ f(x)a, where h ∈ H. This
is the unique linear functional with ker(f) = H and f(a) = 1. Conversely,
given a nonzero linear functional f : E → R, the subspace H = Ker(f) is a

hyperplane: fix a ∈ E so that f(a) 6= 0; then for each x ∈ E, h(x) = x− f(x)
f(a)a

is in H (and H ∩ Ra = {0}), so E = H ⊕ Ra.

Proposition 1. Let E be a normed vector space, H ⊂ E a hyperplane,
f : E → R any linear functional with H = ker(f) . H is closed in E iff f is
a continuous linear functional.

Proof. That H = ker(f) is closed if f is continuous is clear, since H =
f−1({0}.
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Conversely, assume H is closed and let a ∈ E be such that f(a) = 1.

Exercise 2. Show that if f : E → R is a linear functional and f(a) = 1,
then {w ∈ E|f(w) = 1} = a+H, where H = ker(f) and we define a+H =
{v ∈ E|v = a+ h for some h ∈ H}.

Since a + H is closed and does not contain 0 ∈ E, there is a ball B =
{v ∈ E, |v|E ≤ r} disjoint from a+H. That is:

|v|E ≤ r ⇒ f(v) 6= 1.

We claim that, in fact:

|v|E ≤ r ⇒ |f(v)| ≤ 1

.
If not, evidently (for such a v ∈ B) f(v) 6= 0, and letting w = v

f(v) we see

that |f(v)| > 1 implies w ∈ B, while f(w) = 1, so w is in a+H and also in
B, contradiction. This proves the claim, and (by considering rv/|v|E , which
is in B) the claim shows that, for all v ∈ E: |f(v)| ≤ (1/r)|v|E , so f is a
bounded linear functional.

2. Finite-dimensional subspaces are closed.
Proposition 2. If V is a closed subspace, W a finite-dimensional subspace

of a normed vector space E, then V +W is closed in E. In particular, any
finite-dimensional subspace is closed.

Proof. First, one-dimensional subspaces are closed: let (vn)n≥1 be a
sequence of the form vn = λna, where λn ∈ R and a 6= 0 is a fixed vector
in E. Suppose vn → b ∈ E. Then (vn) is a Cauchy sequence, and since
|λn − λn| = 1

|a|E |vn − vm|E , it follows that (λn) is a Cauchy sequence, so
λn → λ0, and vn → λ0a. This shows b = λ0a.

In general, by induction on the dimension of W , it suffices to consider
the case W = Ra, a 6∈ V . Then any x ∈ V +W can be written uniquely in
the form x = f(x)a+ y with y ∈ V , for a linear functional f : V +W → R,
which is continuous since V is a closed hyperplane in V +W .

Exercise 3. Show that f : V ⊕ Ra → R defined by x = y + f(x)a
(where y ∈ V ) is a linear functional on V ⊕ Ra. Hint: uniqueness of this
representation of x.

Let b ∈ E be in the closure of V +W , b = limxn, xn = f(xn)a+yn. Since
f is bounded, f(xn) is a Cauchy sequence in R, converging to λ ∈ R. Thus
yn has the limit b−λa, which is in V (since V is closed). Thus b ∈ V +W .
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Alternative proof.1 Let E be a normed vector space, V ⊂ E a finite-
dimensional subspace. Let (xn)n≥1 be a sequence of vectors in V , converging
to x0 ∈ E in the norm of E. In particular, (xn) is a Cauchy sequence in E.

The norm of E induces a norm in V , which (since V is finite-dimensional)
is equivalent to the Euclidean norm, and therefore complete. Thus (xn)
(being a Cauchy sequence in V ) converges to a vector v0 ∈ V . By uniqueness
of limits (or directly via the triangle inequality) we see that v0 = x0, and
therefore x0 ∈ V . This shows V is closed in E.

3. Distance to a closed subspace.
Let V ⊂ E be a subspace of a normed vector space E. Given x ∈ E, we

define the distance to V by:

d(x, V ) = inf{|x− y|; y ∈ V }.

If E is a Banach space, V is a proper closed subspace and x ∈ E \ V , then
d(x, V ) > 0. For if d(x, V ) = 0 we may take a sequence yn ∈ V with
|x − yn| → 0. The triangle inequality implies (yn) is a Cauchy sequence,
converging (in view of the hypotheses) to y ∈ V with |x− y| = 0, contradic-
tion.

Exercise 4. Show that if V is locally compact (in particular, if V is
finite dimensional) this infimum is attained by some vector in V (that is,
(∃v ∈ V )d(x, V ) = |x− v|).

Hint. Let (yn) be a minimizing sequence in V . Use the triangle inequality
to show (yn) is bounded.

Lemma 1. Let E be a Banach space, V ⊂ E a proper closed subspace.
Then for every ε > 0 there exists x0 ∈ E with |x0| = 1 and |x0 − x| ≥ 1− ε,
∀x ∈ V .

Proof. Let x′ ∈ E \ V , d = dist(x′, V ) > 0 (since V is closed), η > 0

arbitrary. Then there is y′ ∈ V so that d ≤ |x′−y′| ≤ d+η. Let x0 = x′−y′
|x′−y′| .

For any x ∈ V we have:

|x0−x| =
1

|x′ − y′|
|x′−y′−|x′−y′|x| ≥ d

|x′ − y′|
≥ d

d+ η
= 1−ε if η =

εd

1− ε
,

since y′ + |x′ − y′|x ∈ V .

4. Locally compact Banach spaces are finite-dimensional.

1This proof was shown to me by Ryan Unger, a student in Math 447-fall 2016.
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Definition. A normed vector space space E is locally compact if any
bounded subset of E has compact closure in E. (In particular, in this case
the unit sphere is compact.) Equivalently, any bounded sequence in E has
a convergent subsequence.

By the Heine-Borel theorem, finite-dimensional Banach spaces are locally
compact. The converse is true.

Theorem. (S. Banach) Any locally compact Banach space E is finite
dimensional.

Proof. Let x1 ∈ E be arbitrary, with unit norm. Given x1, . . . , xr in E
of unit norm, let Gr ⊂ E be the r-dimensional subspace of E spanned by
these vectors. Being finite-dimensional, Gr is a closed subspace of E. If it is
a proper subspace, by the lemma we may find a unit vector xr+1 ∈ E with
|xr+1 − xi| ≥ 1/2, i = 1, . . . , r.
If we may do this for each r, we obtain an infinite sequence (xr)r≥1 of unit
vectors satisfying |xp − xq| ≥ 1/2 for each p 6= q, in particular admitting no
convergent subsequence. This contradicts the assumption that E is locally
compact.

Separable normed spaces. A metric space is separable if it has a countable
dense set (equivalently, a countable basis of open sets.)

A sequence (an)n≥1 of vectors in a normed vector space E is a total
sequence if the set of finite linear combinations of vectors in the sequence is
dense in E.

Proposition. A normed vector space is separable iff it has a total sequence
consisting of linearly independent vectors.

Proof. (Outline.) If E has a total sequence (an), it is easy to see that
the set D of all finite linear combinations of the an with rational coefficients
is countable, and also dense, since:

|(λ1a1 + . . . λNaN )− (r1a1 + . . .+ rNaN )| ≤
N∑
j=1

|λj − rj ||aj |.

Conversely, if E is separable (and infinite-dimensional), let (an)n≥1 be a
countable dense set, where each an 6= 0. Given an1 = a1, . . . ank

, let ank+1

be the first vector on the list which is not in the linear span of an1 , . . . ank
.

Such a vector must exist, since (as seen in Lemma 2) such a span is closed,
and is not E. It is easy to see that the sequence (ank

)k≥1 is a total sequence
of l.i. vectors.
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Exercise. The spaces c0 of sequences of real numbers with limit zero
(with the sup norm) and l1 of summable sequences (with the norm

∑
j |xj |)

are separable Banach spaces, while the space l∞ of bounded sequences (with
the sup norm) is complete, but not separable.
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