LOCALLY COMPACT BANACH SPACES ARE FINITE DIMENSIONAL

1. Hyperplanes and bounded linear functionals.

Basic fact. A linear map L : E — F of normed vector spaces is contin-
uous iff there exists an M > 0 so that |Lv|p < M|v|g, for all v € E. (We
refer to this by saying ‘L is bounded’.)

Proof. 1f such an M exists, we have |Lv; — Luva|p < M|v; — va|g. Con-
versely, if L is continuous, there is an r > 0 so that |v|g < r = |Lv|p < 1
Then for any nonzero v € E we have |L(|Z|1;3)|F <1, or |Lv|p < Ljv|g.

Remark: Any linear map L : R™ — R" is automatically bounded: for
r=(zt,...2™) =Y 2'e;, we have:

m
L@ < Y lailllLlen)l| < MY |ail < My/ml|z]|, where M = jmax |L(ei)],

i=1 %
and ||z|| denotes the euclidean norm.

Hyperplanes. A it hyperplane is a subspace H C E of a (real) vector
space F satisfying, for each a € H:

EF=H®Ra

(algebraic direct sum).

A ‘linear functional’ on a vector space E is a linear map f : E — R.
There is a general correspondence between hyperplanes and linear function-
als. First, if f is a linear functional, H = ker(f) (the kernel, or nullspace of
f) is a hyperplane.

Exercise 1. Prove this.

In the other direction: given a hyperplane H and a nonzero vector a ¢ H,
define a linear functional f : E — R by © = h + f(x)a, where h € H. This
is the unique linear functional with ker(f) = H and f(a) = 1. Conversely,
given a nonzero linear functional f : £ — R, the subspace H = Ker(f) is a
hyperplane: fix a € E so that f(a) # 0; then for each z € E, h(z) = x—%a
isin H (and H NRa = {0}), so E = H @ Ra.

Proposition 1. Let E be a normed vector space, H C E a hyperplane,
f: E — R any linear functional with H = ker(f) . H is closed in E iff f is
a continuous linear functional.

Proof. That H = ker(f) is closed if f is continuous is clear, since H =

fH{o}.



Conversely, assume H is closed and let a € E be such that f(a) = 1.

Exercise 2. Show that if f : £ — R is a linear functional and f(a) =1,
then {w € E|f(w) =1} = a+ H, where H = ker(f) and we define a + H =
{v € Elv=a+ h for some h € H}.

Since a + H is closed and does not contain 0 € F, there is a ball B =
{v € E,|v|g <r} disjoint from a + H. That is:

lvlp <r= f(v) # 1.
We claim that, in fact:

g <r=[flv)] <1

If not, evidently (for such av € B) f(v) # 0, and letting w = ﬁ we see
that | f(v)| > 1 implies w € B, while f(w) =1, so w is in a + H and also in
B, contradiction. This proves the claim, and (by considering rv/|v|g, which
is in B) the claim shows that, for all v € E: |f(v)| < (1/7)|v|g, so f is a
bounded linear functional.

2. Finite-dimensional subspaces are closed.

Proposition 2. If V' is a closed subspace, W a finite-dimensional subspace
of a normed vector space F, then V + W is closed in E. In particular, any
finite-dimensional subspace is closed.

Proof. First, one-dimensional subspaces are closed: let (v,)n>1 be a
sequence of the form v, = A\,a, where A\, € R and a # 0 is a fixed vector
in E. Suppose v, — b € E. Then (v,) is a Cauchy sequence, and since
An — | = ﬁ\vn — Um|E, it follows that (A,) is a Cauchy sequence, so
An — Ag, and v, — Aga. This shows b = Aga.

In general, by induction on the dimension of W, it suffices to consider
the case W =Ra, a € V. Then any x € V + W can be written uniquely in
the form x = f(x)a +y with y € V, for a linear functional f: V +W — R,
which is continuous since V' is a closed hyperplane in V 4+ W.

Exercise 3. Show that f : V @ Ra — R defined by z = y + f(z)a
(where y € V) is a linear functional on V' & Ra. Hint: uniqueness of this
representation of x.

Let b € E be in the closure of V+W b = limzy,, x, = f(x)a+yy,. Since
f is bounded, f(z,) is a Cauchy sequence in R, converging to A € R. Thus
yn, has the limit b — Aa, which is in V' (since V' is closed). Thus b € V + W.



Alternative proof.! Let E be a normed vector space, V C E a finite-
dimensional subspace. Let (zy,),>1 be a sequence of vectors in V', converging
to xp € E in the norm of E. In particular, (x,) is a Cauchy sequence in E.

The norm of E induces a norm in V', which (since V is finite-dimensional)
is equivalent to the Euclidean norm, and therefore complete. Thus (x,)
(being a Cauchy sequence in V') converges to a vector vg € V. By uniqueness
of limits (or directly via the triangle inequality) we see that vy = z¢, and
therefore g € V. This shows V is closed in E.

3. Distance to a closed subspace.
Let V C E be a subspace of a normed vector space E. Given x € E, we
define the distance to V' by:

d(z,V) = nf{lz —y[;y € V}.

If F is a Banach space, V' is a proper closed subspace and x € E \ V, then
d(x,V) > 0. For if d(z,V) = 0 we may take a sequence y, € V with
|z — yn| — 0. The triangle inequality implies (y,) is a Cauchy sequence,
converging (in view of the hypotheses) to y € V' with |x —y| = 0, contradic-
tion.

Exercise 4. Show that if V is locally compact (in particular, if V' is
finite dimensional) this infimum is attained by some vector in V' (that is,
(Fv e V)d(z,V) = |z —v]).

Hint. Let (y,) be a minimizing sequence in V. Use the triangle inequality
to show (y,,) is bounded.

Lemma 1. Let E be a Banach space, V C F a proper closed subspace.
Then for every € > 0 there exists 29 € E with |xg| =1 and |zg —z| > 1 —,
Ve eV.

Proof. Let 2/ € E\V, d = dist(z',V) > 0 (since V is closed), n > 0
arbitrary. Then there is y’ € V so that d < |2/ —y/| < d+n. Let g = |xjf;,|
For any x € V we have:

d d
> =1l—€ifn= ‘ )
2" —y'| ~ d+n 1—e¢

|zo—z| = |2’y =2’ — /x| =

1
|2 = y/|
since ¥ + |2/ —y/|x € V.

4. Locally compact Banach spaces are finite-dimensional.

I This proof was shown to me by Ryan Unger, a student in Math 447-fall 2016.



Definition. A normed vector space space E is locally compact if any
bounded subset of E has compact closure in E. (In particular, in this case
the unit sphere is compact.) Equivalently, any bounded sequence in E has
a convergent subsequence.

By the Heine-Borel theorem, finite-dimensional Banach spaces are locally
compact. The converse is true.

Theorem. (S. Banach) Any locally compact Banach space E is finite
dimensional.

Proof. Let x1 € E be arbitrary, with unit norm. Given z1,...,z, in E

of unit norm, let G, C E be the r-dimensional subspace of E spanned by
these vectors. Being finite-dimensional, G, is a closed subspace of E. If it is
a proper subspace, by the lemma we may find a unit vector z,41 € F with
|Tpi1 — x| > 1/2,i=1,...,r.
If we may do this for each r, we obtain an infinite sequence (x,),>; of unit
vectors satisfying |z, — z4| > 1/2 for each p # ¢, in particular admitting no
convergent subsequence. This contradicts the assumption that E is locally
compact.

Separable normed spaces. A metric space is separable if it has a countable
dense set (equivalently, a countable basis of open sets.)

A sequence (an)n>1 of vectors in a normed vector space E is a total
sequence if the set of finite linear combinations of vectors in the sequence is
dense in E.

Proposition. A normed vector space is separable iff it has a total sequence
consisting of linearly independent vectors.

Proof. (Outline.) If E has a total sequence (a,), it is easy to see that
the set D of all finite linear combinations of the a,, with rational coefficients
is countable, and also dense, since:

N

’()\10,1 +. ..)\NCLN) — (7“10,1 =+ ... —i—rNaN)] < Z |/\j — eraj\.
j=1

Conversely, if F is separable (and infinite-dimensional), let (a,)n>1 be a
countable dense set, where each a, # 0. Given a,, = a1,...ay,, let Apyeyy
be the first vector on the list which is not in the linear span of a,,,...an,.
Such a vector must exist, since (as seen in Lemma 2) such a span is closed,
and is not E. It is easy to see that the sequence (ay, )r>1 is a total sequence
of Li. vectors.



Ezercise. The spaces ¢y of sequences of real numbers with limit zero
(with the sup norm) and [' of summable sequences (with the norm 5 ;i)
are separable Banach spaces, while the space [*° of bounded sequences (with
the sup norm) is complete, but not separable.



