
GRAPHICAL ANALYSIS OF AUTONOMOUS EQUATIONS

The method described here applies to autonomous first-order equations:

y′ = f(y), y = y(t).

We’ll assume f and df
dy are continuous for all y (in fact, they’ll usually be

polynomials). By the existence-uniqueness theorem, given any y0 ∈ R there
is a unique solution to the DE satisfying y(0) = y0. Since autonomous
equations are separable, they can in principle be solved by integration; in
practice this can be a lot of work, or impossible. The point of the graphical
analysis is that many conclusions of practical value- long-time behavior or
solutions, whether solutions are defined for all t or not- can be decided
without solving the equation.

Example 1. (Logistic growth.) Consider

y′ = ay − by2, y = y(t),

where a, b are positive constants. This is sometimes used as a population
growth model, with a representing the intrinsic growth rate and −by2 a
negative contribution to growth (say, due to less than friendly encounters
between individuals).

To solve the equation, one needs the ‘partial fraction expansion’:

1
ay − by2

=
1
a
(
1
y

+
b

a− by
),

and then integration gives:

ln
y

a− by
= at + C, or y(t) =

Caeat

1 + bCeat
,

where the value of C can be computed from the initial condition y(0) = y0:

C =
y0

a− y0b
.

We may also write the general solution in the form:

y(t) =
aea(t−t0)

1 + bea(t−t0)
if C = e−t0 > 0;

y(t) = − aea(t−t0)

1− bea(t−t0)
if C = −e−t0 < 0.
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(C > 0 corresponds to 0 < y0 < a/b, while C < 0 corresponds to y0 > a/b
or y0 < 0).This shows all solution curves can be seen as translations of a
small number of curves.

Using y0 as a parameter, the general solution is:

y(t) =
y0e

at

1 + y0(b/a)(eat − 1)
.

The denominator vanishes when eat − 1 = − a
by0

. From this we see the
following:

(i) If y0 < 0, the solution exists only in an interval of the form (−∞, T∗),
where T∗ = (1/a) ln(1− a

by0
) > 0; y(t) → −∞ as t → T∗ from the left.

(ii) If y0 > 0, there are two cases: for 0 < y0 < a/b, we have that
− a

by0
< −1, while eat − 1 > −1 for all t. So in this case the denominator

does not vanish, and the solution is defined for all t ∈ R.
If, however, y0 > a/b there will be a T∗ < 0 so that the denominator

vanishes at t = T∗. So in this case the solution is defined only on the interval
(T∗,∞) (where T∗ depends on y0), and tends to +∞ as t → T∗ from the
right.

In general, if f(y) has ‘growth rate greater than linear’ in y as |y| → ∞,
a solution will ‘blow up’ at some finite positive or negative time, unless it is
‘trapped’ between two constant solutions.

As noted above, within each range (defined by the equilibria) all solution
curves have the same ‘shape’, and differ only by translation. This is a general
fact for autonomous equations.

Note that y(t) ≡ a/b is itself a constant solution to the equation, which
is missed by the ‘general solution’ found (that is, it does not correspond to
any value of C).

A constant solution such as a/b in this example is called ‘stable’. Pre-
cisely, a constant solution ȳ to an autonomous DE is said to be stable if
any solution y(t) with initial condition y(0) = y0 sufficiently close to ȳ
tends to ȳ as t → ∞. Constants solutions are also called ‘equilibria’ (from
mechanics: they correspond to positions from which particles following the
equation don’t move.) An equilibrium ȳ is unstable if solutions starting from
y0 sufficiently close to ȳ move away from ȳ for positive time (equivalently:
approach ȳ as t → −∞.

In the next example we find and classify the equilibria without solving
the equation.
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Example 2. Consider the autonomous equation:

y′ = f(y), y = y(t), f(y) = y(y − 2)(y + 1).

The equilibria (constant solutions) correspond exactly to the values of y
for which f(y) = 0, in this case: ȳ = 0,−1 or 2. To decide their stability, we
look at the sign of f in each of the four intervals defined by the equilibria.
From left to right, these are: − + − +. In terms of the mechanical
analogy (where y′ represents velocity, f(y) > 0 corresponds to ‘particle
moving to the right’, and f(y) < 0 to ‘particle moving to the left’, so we
may draw a diagram with arrows representing the direction of motion:

←− −1 −→ 0 ←− 2 −→

From this we see immediately that −1 and 2 are unstable equilibria, while
0 is stable.

Next we draw the diagram of all solutions (done in class.) To begin, in
the (t, y) plane we have horizontal lines at y = −1, 0, 2, corresponding to
constant solutions. Solutions with −1 < y0 < 0 move away from the line
y = −1, towards the line y = 0, as t → ∞; solutions with 0 < y0 < 2
move away from the line y = 2, towards the line y = 0. These solutions are
all defined for all t ∈ R (they are ‘trapped between constant solution’, so
cannot ‘blow up in finite time’.) On the other hand, if y0 > 2 or y0 < −1,
the situation is different: this solutions move away from y = 2 (or y = −1,
respectively) for positive time. In fact, for large y we have f(y) ∼ y3, and
we know the solutions of y′ = y3 exhibit ‘finite-time blowup’. From this it
is not hard to show that solutions with y0 > 2 or y0 < −1 are only defined
in an interval (−∞, T∗), where the ‘blowup time’ T∗ depends on y0.

The following examples may be analyzed in the same way. In each case,
we (i) find and classify the equilibria (as stable or unstable); (ii) sketch the
diagram of all solutions (including at least two curves in the region defined by
the equilibria); (iii) identify the initial conditions corresponding to solutions
defined for all t ∈ R, and those defined only on an interval.

1.y′ = −2y(y2 − 1)
2.y′ = sin y

1+y2

3.y′ = 2y2 − 4y
4.y′ = e−y cos y
5.y′ = (y2 + 1)(y2 − 1)
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