Math 231.04, Problem Set 10

Due Wednesday, March 31, 2010

From Text Fundamentals of Differential Equations, by Nagle, Saff, and Snider

Section 5.2, # 1, 13, 19

Section 7.2, # 1, 3, 5, 7, 9, 13, 15, 17, 19 (On #5 and #7, you can use the formula on the inside front cover of your text for \(\int e^{au} \cos nu \, du \).)

Additional Problems:

1.) Solve the initial value system

\[x' = 4x + y \quad ; \quad x(0) = 3, \]
\[y' = -x + 2y \quad ; \quad y(0) = 1. \]

2.) Solve the system

\[x' = 4x + y, \]
\[y' + x' = -x + y. \]

3.) Let \(f(t) = \begin{cases} t^2, & 0 < t < 3 \\ 0, & t > 3 \end{cases} \). Calculate \(\mathcal{L}f(s) \), the Laplace transform of \(f \).

4.) Let \(f(t) = \begin{cases} e^t, & 0 < t < 2 \\ t, & t > 2 \end{cases} \). Calculate \(\mathcal{L}f(s) \), the Laplace transform of \(f \).

5.) Use Table 7.1 on p. 384 of your text and the linearity properties of the Laplace transform to compute the Laplace transform of the function

\[f(t) = 6 + 3t^2 - 2 \cos 5t + 3e^{2t} \sin 4t. \]