Math 231, Section 4, Problem Set 1

Due Wednesday, Jan. 20, 2010

From Text *Fundamentals of Differential Equations*, by Nagle, Saff, and Snider

Section 1.1, # 13, 14, 15, 16
Section 1.2, # 3, 5, 14, 20

Additional Problems:

1.) Look up “Navier-Stokes equations” on Wikipedia and read enough to answer the following questions.
 A.) Write down the general form of the Navier-Stokes equations.
 B.) What does the unknown (usually denoted \(v \)) in the Navier-Stokes equations represent physically?
 C.) If you are the first to prove or disprove the global existence and uniqueness of solutions to the Navier-Stokes equations, you will win a cash prize from the Clay Mathematics Institute. How much is the prize?

2.) Check whether \(y = 2t^2 + t^3 \) is a solution of \(ty' - y = t^2 \).

3.) Check whether \(y = Ce^{-x} + x - 1 \) is a solution of \(y' = x - y \).

4.) Show that \(y = \frac{1}{1-x^2} \) is a solution of \(y' - 2xy^2 = 0 \), \(y(0) = 1 \). What happens to this solution as \(x \to 1^- \) (that is, \(x \) goes toward 1 from the left) or \(x \to -1^+ \) (that is, \(x \) goes to \(-1 \) from the right)?

5.) Solve \(y' = x + e^{4x} \).

6.) A.) Solve \(y' = \frac{x + 3}{x^2 + 3x + 2} \).

 Hint: To integrate, use the method of Partial Fractions. To integrate \(\frac{p(x)}{q(x)} \), where \(p \) and \(q \) are polynomials and the degree of \(p \) is strictly less than the degree of \(q \), first try to factor \(q \). If \(q \) factors completely into terms of degree 1 (that is, into \((x - a)(x - b) \cdots \)), then one can find numbers \(A, B, \ldots \) so that
 \[
 \frac{p(x)}{q(x)} = \frac{A}{x - a} + \frac{B}{x - b} + \cdots.
 \]

 To find the numbers \(A, B, \ldots \), multiply through the equation on both sides by the product of all of the terms \((x - a), (x - b), \ldots \). Then set \(x = a \) to find \(A \), \(x = b \) to find \(B \), etc. Once you know these numbers, you have the “partial fraction expansion” of \(p/q \) and you can use that identity to do the integration. I will remind you in class what to do if \(q \) does not factor completely into a product of monomial terms. We will use this method a lot in Chapter 7.

 B. Solve \(y' = \frac{x + 3}{x^2 + 3x + 2} \), \(y(0) = 0 \).

 Continued on back of page
7.) Solve $y' = \frac{x}{x + 1}$.

Hint: To integrate, either write $x = x + 1 - 1$ in the numerator and then separate into two terms, or divide the denominator into the numerator to get a non-fractional term (in this example an integer) plus a fraction coming from the remainder, where now in the fraction the numerator has lower degree than the denominator. The second method applies more generally to $p(x)/q(x)$ where p and q are polynomials and the degree of p is equal to or greater than the degree of q. Then the method of partial fractions is used on the term coming from the remainder.

8.) A.) Solve $y' = xe^{2x}$.

Hint: remember the integration by parts formula

$$\int u dv = uv - \int v du.$$

B.) Solve $y' = xe^{2x}$, $y(1) = 2$.