1.) (20 points) Solve
\[y'' - 4y' + 5y = 0, \quad y(0) = 3, \quad y'(0) = 4. \]

We guess a solution of the form \(y = e^{rt} \), which leads to the characteristic equation
\[r^2 - 4r + 5 = 0. \]

We cannot factor this quadratic, so using the quadratic formula we get
\[r = \frac{4 \pm \sqrt{16 - 4 \cdot 5}}{2} = \frac{4 \pm \sqrt{-4}}{2} = \frac{4 \pm \sqrt{4} \sqrt{-1}}{2} = \frac{4 \pm 2i}{2} = 2 \pm i. \]

This implies that the general solution is
\[y = C_1 e^{2t} \cos t + C_2 e^{2t} \sin t. \]

Then the condition \(y(0) = 3 \) yields
\[3 = C_1 e^0 \cos 0 + C_2 e^0 \sin 0 = C_1 + 0 = C_1. \]

Hence
\[y = 3e^{2t} \cos t + C_2 e^{2t} \sin t. \]

Next, we calculate \(y' \) using the product rule:
\[y' = 6e^{2t} \cos t - 3e^{2t} \sin t + C_2 2e^{2t} \sin t + C_2 e^{2t} \cos t. \]

Hence the condition \(y'(0) = 4 \) yields
\[4 = 6 - 0 + 0 + C_2. \]

Hence \(C_2 = 4 - 6 = -2 \). So finally
\[y = 3e^{2t} \cos t - 2e^{2t} \sin t. \]
2.) (20 points) Assuming the fact that the function \(y_1 = e^t \) is a solution of the equation

\[
(*) \quad y'' - \left(2 + \frac{2}{t} \right) y' + \left(1 + \frac{2}{t} \right) y = 0,
\]

find the general solution of (*)

To get the general solution, we need two linearly independent solutions. Since we have one solution, we use the method of reduction of order. We guess a second solution of the form \(y_2 = vy_1 \), where \(v \) is a function of \(t \). Here \(y_2 = ve^t = e^tv \); hence by the product rule, \(y_2' = e^tv + e^t v' \) and \(y_2'' = e^tv + e^tv' + e^tv' + e^t v'' = e^tv + 2e^tv' + e^t v'' \). Substituting this in the equation, we get

\[
y_2'' - \left(2 + \frac{2}{t} \right) y_2' + \left(1 + \frac{2}{t} \right) y_2 = e^tv + 2e^tv' + e^tv'' - \left(2 + \frac{2}{t} \right) (e^tv + e^t v') + \left(1 + \frac{2}{t} \right) e^tv
\]

\[
= e^t v + 2e^t v' + e^t v'' - 2e^t v - 2e^t v' - \frac{2}{t} e^t v + e^t v + \frac{2}{t} e^t v
\]

\[
= e^t v'' + \left(2e^t - 2e^t - \frac{2}{t} e^t \right) v' + \left(e^t - 2e^t - \frac{2}{t} e^t + e^t + \frac{2}{t} e^t \right) v
\]

\[
= e^t v'' - \frac{2}{t} e^t v'.
\]

Setting this equal to 0 and we get the equation \(e^t v'' - \frac{2}{t} e^t v' = 0 \). Dividing through by \(e^t \) we get

\[
v'' - \frac{2}{t} v' = 0.
\]

We make the substitution \(u = v' \). This gives the equation \(u' - \frac{2}{t} u = 0 \), which is a first order linear equation which we can solve by the method of the integrating factor. The integrating factor is

\[
e^\int -\frac{2}{t} \, dt = e^{-2 \ln t} = e^{\ln (t^{-2})} = t^{-2} = \frac{1}{t^2}.
\]

Multiplying through the equation \(u' - \frac{2}{t} u = 0 \) by the integrating factor \(\frac{1}{t^2} \) gives

\[
\frac{1}{t^2} u' - \frac{2}{t^3} u = 0.
\]

The left side is \(\left(\frac{1}{t^2} u \right)' \), by the product rule. So we have \(\left(\frac{1}{t^2} u \right)' = 0 \), which implies \(\frac{1}{t^2} u = C_1 \), or \(u = C_1 t^2 \). Then since \(u = v' \), we get \(v = \int u = \int C_1 t^2 \, dt = C_1 t^3/3 + C_2 \). Then

\[
y_2 = ve^t = \left(C_1 \frac{t^3}{3} + C_2 \right) e^t = \frac{C_1}{3} t^3 e^t + C_2 e^t.
\]

Since we are just looking for one \(y_2 \), we can take \(C_1 = 3 \) and \(C_2 = 0 \) to obtain \(y_2 = t^3 e^t \). Then the general solution is \(y = C_1 y_1 + C_2 y_2 \), or

\[
y = C_1 e^t + C_2 t^3 e^t,
\]

for arbitrary constants \(C_1 \) and \(C_2 \).
3.) (10 points) For the equations below, write down the general form of the particular solution y_p that you would use in the method of undetermined coefficients. Just write down the form; do not attempt to solve for the coefficients.

a.) (5 points) $y'' - 9y = t^2 \sin 4t$.

We first find y_h, the solution to the homogeneous equation $y'' - 9y = 0$. For this we guess $y_h = e^{rt}$, which leads to the characteristic equation $r^2 - 9 = 0$. Factoring, we get $(r + 3)(r - 3) = 0$, so $r_1 = -3$ and $r_2 = +3$ are the roots of the characteristic equation. Thus the general form of y_h is $y_h = C_1 e^{-3t} + C_2 e^{3t}$.

Now we look for a particular solution y_p. The right side of the equation is $t^2 \sin 4t$ we guess $y_p = (At^2 + Bt + C) \sin 4t + (Dt^2 + Et + F) \cos 4t$. Since none of these terms, after you multiply them out, has any term in which is a constant multiple of any term in y_h, this form of y_p is sufficient.

Hence $y_p = (At^2 + Bt + C) \sin 4t + (Dt^2 + Et + F) \cos 4t$.

b.) (5 points) $y'' - 9y = te^{3t}$.

The left side of the equation is the same as for part a., so we have the same homogeneous solution $y_h = C_1 e^{-3t} + C_2 e^{3t}$. Now we look for a particular solution y_p. The right side of the equation is of the form te^{3t} we try $y_p = (At + B)e^{3t} = Ae^{3t} + Be^{3t}$. However, the term Ae^{3t} is a constant multiple of the term $C_2 e^{3t}$ in y_h, so we need to modify y_p by multiplying by t to obtain $y_p = t(At + B)e^{3t} = At^2 e^{3t} + Bte^{3t}$. This no longer has any overlap with y_h, so this form of y_p is sufficient. So $y_p = At^2 e^{3t} + Bte^{3t}$.

4.) (10 points) Solve the Cauchy-Euler equation $t^2 y'' + 7ty' + 9y = 0$, for $t > 0$.

Because this is a Cauchy-Euler equation, we try $y = t^r$ as a solution. Then $y' = rt^{r-1}$ and $y'' = r(r-1)t^{r-2}$. Substituting into the equation gives

$$t^2 r(r-1)t^{r-2} + 7rt^{r-1} + 9t^r = 0,$$

or

$$r(r-1)t^r + 7rt^r + 9t^r = 0.$$

Cancelling t^r gives $r(r-1) + 7r + 9 = 0$, or

$$0 = r^2 + 6r + 9 = (r + 3)^2.$$

Hence $r = -3$ is a double root, and we get solutions $y_1 = t^{-3}$ and $y_2 = t^{-3} \ln t$. The general solution y is a linear combination of y_1 and y_2; that is,

$$y = C_1 t^{-3} + C_2 t^{-3} \ln t,$$

for arbitrary constants C_1 and C_2.

5.) (a) (5 points) Check that the functions $y_1 = t$ and $y_2 = t^3$ are solutions of

$$y'' - \frac{3}{t} y' + \frac{3}{t^2} y = 0, \quad t > 0.$$

Since $y_1 = t$, we get $y_1' = 1$ and $y_1'' = 0$. Therefore

$$y_1'' - \frac{3}{t} y_1' + \frac{3}{t^2} y_1 = 0 - \frac{3}{t} + \frac{3}{t^2} \cdot t = \frac{3}{t} - \frac{3}{t} = 0,$$

hence y_1 is a solution.

For $y_2 = t^3$ we get $y_2' = 3t^2$ and $y_2'' = 6t$. Hence

$$y_2'' - \frac{3}{t} y_2' + \frac{3}{t^2} y_2 = 6t - \frac{3}{t} 3t^2 + \frac{3}{t^2} t^3 = 6t - 9t + 3t = 0,$$

so y_2 is a solution.

(b) (15 points) Find the general solution of

$$y'' - \frac{3}{t} y' + \frac{3}{t^2} y = t^2, \quad t > 0.$$

To find the general solution, we need to find a particular solution y_p. Using the method of variation of parameters, we guess a solution of the form $y_p = v_1 y_1 + v_2 y_2$. The equations determining v'_1 and v'_2 are $y_1 v'_1 + y_2 v'_2 = 0$ and $y'_1 v'_1 + y'_2 v'_2 = g(t)$, where $g(t)$ is the right side of the equation. Using our values of y_1, y_2 and g, we get

$$t v'_1 + t^3 v'_2 = 0$$
$$v'_1 + 3 t^2 v'_2 = t^2.$$

To solve these equations simultaneously for v'_1 and v'_2, it is easiest to first cancel a factor of t from the first equation to get $v'_1 + t^2 v'_2 = 0$. Then when we subtract this equation from the second equation $v'_1 + 3 t^2 v'_2 = t^2$ to get $2 t^2 v'_2 = t^2$. Hence $v'_2 = 1/2$. Substituting $v'_2 = 1/2$ into $v'_1 + t^2 v'_2 = 0$ gives $v'_1 + \frac{1}{2} t^2 = 0$ or $v'_1 = -\frac{1}{2} t^2$.

Integrating the equation $v'_1 = -\frac{1}{2} t^2$ gives $v_1 = -\frac{1}{2} \frac{t^3}{3} = -\frac{1}{6} t^3$ while integrating $v'_2 = 1/2$ gives $v_2 = \frac{1}{2} t$ (the constants of integration are not needed here). Hence

$$y_p = v_1 y_1 + v_2 y_2 = -\frac{1}{6} t^3 \cdot t + \frac{1}{2} t \cdot t^3 = \left(-\frac{1}{6} + \frac{1}{2} \right) t^4 = \left(-\frac{1}{6} + \frac{3}{6} \right) t^4 = \frac{2}{6} t^4 = \frac{1}{3} t^4.$$

Then the general solution is $y = y_h + y_p$, or

$$y = C_1 t + C_2 t^3 + \frac{1}{3} t^4,$$

for arbitrary constants C_1, C_2, and C_3.
6.) (10 points) A spring has mass 2 kg, damping constant 8 N-sec/m, and spring constant (stiffness) 26 N/m. There is no external force driving the spring. Find the general formula for the displacement from equilibrium position of the spring at time \(t \) seconds, and determine whether this spring is undamped, underdamped, critically damped, or overdamped.

The general equation for the displacement from equilibrium \(y \) of the spring is \(my'' + by' + ky = 0 \), where \(m \) is the mass, \(b \) is the stiffness, and \(k \) is the spring constant. Here we get \(2y'' + 8y' + 26y = 0 \), or, after dividing by 2,

\[
y'' + 4y' + 13y = 0.
\]

The characteristic equation is \(r^2 + 4r + 13 = 0 \). We cannot factor this quadratic, so using the quadratic formula we get

\[
r = \frac{-4 \pm \sqrt{16 - 4 \cdot 13}}{2} = \frac{-4 \pm \sqrt{-36}}{2} = \frac{-4 \pm 6i}{2} = -2 \pm 3i.
\]

This implies that the general solution is

\[
y = C_1 e^{-2t} \cos 3t + C_2 e^{-2t} \sin 3t,
\]

for arbitrary constants \(C_1 \) and \(C_2 \). This spring is underdamped.

7.) (10 points) Solve \(y''' - 4y'' = 48t \).

We first find \(y_h \), the solution to the homogeneous equation \(y''' - 4y'' = 0 \). The characteristic equation is \(r^3 - 4r^2 = 0 \), or \(r^2(r - 4) = 0 \). Hence \(r = 4 \) is a root and \(r = 0 \) is a double root. Therefore

\[
y_h = C_1 e^{4t} + C_2 e^{0t} + C_3 t e^{0t} = C_1 e^{4t} + C_2 + C_3 t,
\]

for arbitrary constants \(C_1, C_2 \) and \(C_3 \).

Next we find a particular solution \(y_p \) of \(y''' - 4y'' = 48t \). Because the inhomogeneous part on the right hand side of the equation is \(48t \), a polynomial of degree 1, the usual guess for \(y_p \) is \(At + B \), the general polynomial of degree 1. However, \(At \) is a constant multiple of the term \(C_3 t \) in \(y_h \) (and \(B \) is a multiple of the term \(C_2 \)), so we multiply by \(t \) and try \(t(At + B) = At^2 + Bt \). However, \(Bt \) is a constant multiple of the term \(C_3 t \) in \(y_h \), so we multiply by \(t \) again, to arrive at

\[
y_p = t(At^2 + B) = At^3 + Bt^2.
\]

This is not a multiple of any term in \(y_h \), so it should work. We calculate

\[
y_p' = 3At^2 + 2Bt, \quad y_p'' = 6At + 2B, \quad \text{and} \quad y_p''' = 6A.
\]

Hence

\[
y_p''' - 4y_p'' = 6A - 4(6At + 2B) = 6A - 24At - 8B = -24At + 6A - 8B.
\]

Therefore \(y''' - 4y'' = 48t \) holds if \(-24A = 48 \) and \(6A - 8B = 0 \). Therefore \(A = -2 \) and hence \(8B = 6A = 6(-2) = -12 \), or \(B = -12/8 = -3/2 \). Therefore

\[
y_p = -2t^3 - \frac{3}{2} t^2.
\]

(c) Finally, the general solution of \(y''' - 4y'' = 48t \) is \(y = y_p + y_h \), or

\[
y = -2t^3 - \frac{3}{2} t^2 + C_1 e^{4t} + C_2 + C_3 t,
\]

for arbitrary constants \(C_1, C_2 \) and \(C_3 \).