Midterm - Math 504

Your Name

1) Fill in the [incomplete] truth-table below [read the statements carefully!]:

P	Q	R	$(P \wedge Q) \rightarrow R$	$Q \vee \neg R$	$[\neg((P \wedge Q) \rightarrow R)] \rightarrow(Q \vee \neg R)$
T	T	T			
T	T	F			
T	F	T			
T	F	F			
F	T	T			
F	T	F			
F	F	T			
F	F	F			

2) Prove or disprove: $(A \cup B) \backslash C=A \cup(B \backslash C)$.

Solution. Your solution comes here...
3) Analyze the logical structure of the following statement: "There are exactly two other people besides Alice who are as smart as she is". [Be careful with the "exactly"!] You may assume that the universe set is the set of all people, say P, so that you can write, say $\exists x(\ldots)$, instead of $\exists x \in P(\ldots)$, for "there is a person x such that...".

Solution. Your solution comes here...
4) Rewrite the [nonsensical] statement below as a positive statement [so no negations before quantifiers or parentheses/brackets, but \notin and \neq are allowed]. Here the universe is \mathbb{R} [so $\exists x(\ldots)$ means $\exists x \in \mathbb{R}(\ldots)]$ and I is the interval $(0,1)$.

$$
\neg[\forall x[(x \in I \vee x>10) \leftrightarrow(\exists y(x \cdot y=1))]]
$$

Solution. Your solution comes here...
5) Let \mathcal{F} be a family of sets and A be a set. Rewrite the statement

$$
\bigcup \mathcal{F} \subseteq \bigcap \mathscr{P}(A)
$$

without using $\subseteq, \nsubseteq, \mathscr{P}, \cup \cap, \backslash,\{$,$\} or \neg$. [You may use $\in, \notin,=, \neq, \wedge, \vee, \rightarrow, \forall$ and \exists, though.]

Solution. Your solution comes here...
6) Let A and B be sets. Prove that $A \backslash(A \backslash B)=A \cap B$.

Proof. Your solution comes here...
7) Let \mathcal{F} and \mathcal{G} be non-empty families of sets. Prove that $\bigcup \mathcal{F}$ and $\bigcup \mathcal{G}$ are disjoint iff for every $A \in \mathcal{F}$ and every $B \in \mathcal{G}$ we have that A and B are disjoint.

Proof. Your solution comes here...
8) Let U be a non-empty set. Prove that for every $A \in \mathscr{P}(U)$, there is a unique $B \in \mathscr{P}(U)$ [this B may depend on the choice of A] such that for every $C \in \mathscr{P}(U)$ we have $C \backslash A=C \cap B$. [Don't let the $\mathscr{P}(U)$ intimidate you. U here is just "the universe", i.e., all sets in here are contained in this U.]

Proof. Your solution comes here...

