Midterm-Math~504

Your Name

1) Fill in the [*incomplete*] truth-table below [read the statements carefully!]:

P	Q	R	$(P \land Q) \to R$	$Q \vee \neg R$	$[\neg((P \land Q) \to R)] \to (Q \lor \neg R)$
Т	Т	Т			
Т	Т	F			
Т	F	Т			
Т	F	F			
F	Т	Т			
F	Т	F			
F	F	Т			
F	F	F			

2) Prove or disprove: $(A \cup B) \setminus C = A \cup (B \setminus C)$.

Solution. Your solution comes here...

3) Analyze the logical structure of the following statement: "There are exactly two other people besides Alice who are as smart as she is". [Be careful with the "exactly"!] You may assume that the universe set is the set of all people, say P, so that you can write, say $\exists x(\ldots)$, instead of $\exists x \in P(\ldots)$, for "there is a person x such that...".

Solution. Your solution comes here...

4) Rewrite the [nonsensical] statement below as a positive statement [so no negations before quantifiers or parentheses/brackets, but \notin and \neq are allowed]. Here the universe is \mathbb{R} [so $\exists x(\ldots)$ means $\exists x \in \mathbb{R}(\ldots)$] and I is the interval (0, 1).

$$\neg \left[\forall x \left[(x \in I \lor x > 10) \leftrightarrow (\exists y (x \cdot y = 1)) \right] \right]$$

Solution. Your solution comes here...

5) Let \mathcal{F} be a family of sets and A be a set. Rewrite the statement

$$\bigcup \mathcal{F} \subseteq \bigcap \mathscr{P}(A)$$

without using \subseteq , $\not\subseteq$, \mathscr{P} , \cup , \cap , \setminus , $\{$, $\}$ or \neg . [You may use \in , \notin , =, \neq , \wedge , \vee , \rightarrow , \forall and \exists , though.]

Solution. Your solution comes here...

6) Let A and B be sets. Prove that $A \setminus (A \setminus B) = A \cap B$.

Proof. Your solution comes here...

7) Let \mathcal{F} and \mathcal{G} be non-empty families of sets. Prove that $\bigcup \mathcal{F}$ and $\bigcup \mathcal{G}$ are disjoint iff for every $A \in \mathcal{F}$ and every $B \in \mathcal{G}$ we have that A and B are disjoint.

Proof. Your solution comes here...

8) Let U be a non-empty set. Prove that for every $A \in \mathscr{P}(U)$, there is a unique $B \in \mathscr{P}(U)$ [this B may depend on the choice of A] such that for every $C \in \mathscr{P}(U)$ we have $C \setminus A = C \cap B$. [Don't let the $\mathscr{P}(U)$ intimidate you. U here is just "the universe", i.e., all sets in here are contained in this U.]

Proof. Your solution comes here...