- 5. 1) [25 points] Let $P \mid Q$ denote "P and Q are not both true".
 - (a) Write the truth table of $P \mid Q$.

Solution. The truth table is:

P	Q	$P \mid Q$
Т	Т	F
Т	\mathbf{F}	Т
F	Т	Т
F	F	\mathbf{F}

(b) Find a formula [involving P and Q] using only \land , \lor and \neg operations logically equivalent to $P \mid Q$.

Solution. $\neg (P \land Q)$ or $(\neg P) \lor (\neg Q)$.

(c) Find a formula logically equivalent to $\neg P$ using only | [and P]. [Show that your formula is indeed equivalent!]

Solution. We have $P \mid P$ works:

$$P \mid P \sim \neg (P \land P) \sim \neg P.$$

(d) Find a formula for $P \wedge Q$ using only | [and P and Q]. [Show that your formula is indeed equivalent!]

Solution. We have that $P \mid Q$ is $\neg(P \land Q)$ by (b). So by double negatives, we need to negate $P \mid Q$ to get $P \land Q$. But, by (c), this is the same as $(P \mid Q) \mid (P \mid Q)$.

(e) Find a formula for $P \lor Q$ using only | [and P and Q]. [Show that your formula is indeed equivalent!]

Solution. By DeMorgan's Law, $P \mid Q \sim (\neq P) \lor (\neg Q)$. So, $(\neg P) \mid (\neg Q) \sim P \lor Q$ [by double negatives]. By part (c), we then have $(P \mid P) \mid (Q \mid Q) \sim P \lor Q$.