1) [10 points] Find the remainder of 2^{2020} when divided by 7 .

Solution. We have:

$$
\begin{aligned}
2020 & =288 \cdot 7+4 \\
288 & =41 \cdot 7+1 \\
41 & =5 \cdot 7+6 \\
5 & =0 \cdot 7+5 .
\end{aligned}
$$

So, $2020=4+1 \cdot 7+6 \cdot 7^{2}+5 \cdot 7^{3}$. Then, since $2^{7} \equiv 2(\bmod 7)$, we have:

$$
2^{2020} \equiv 2^{4+1+6+5}=2^{16}=2^{2+2 \cdot 7} \equiv 2^{2+2}=16 \equiv 2 \quad(\bmod 7) .
$$

Alternatively, since we have $2^{6} \equiv 1(\bmod 7)$ and $2020=366 \cdot 6+4$, we have:

$$
2^{2020}=2^{366 \cdot 6+4}=\left(2^{6}\right)^{366} \cdot 2^{4} \equiv 1^{366} \cdot 2^{4}=2^{4}=16 \equiv 2 \quad(\bmod 7)
$$

2) [10 points] Find all $x \in \mathbb{Z}$ satisfying [simultaneously]:

$$
\begin{aligned}
x & \equiv 3 \quad(\bmod 5), \\
2 x & \equiv 3 \quad(\bmod 7) .
\end{aligned}
$$

If there is no such x, simply justify why.

Solution. The first equation gives $x=3+5 n$, for $n \in Z$. Substituting in the second equation, we get $2(3+5 n) \equiv 3(\bmod 7)$, i.e., $10 n \equiv-3(\bmod 7)$, or $3 n \equiv 4(\bmod 7)$.

Now, we have $1=(-2) \cdot 3+1 \cdot 7$, so $n \equiv-8 \equiv 6(\bmod 7)$. Thus, $n=6+7 m$ for $m \in \mathbb{Z}$. Thus, we have $x=3+5 n=3+5 \cdot(6+7 m)=33+35 m$ for $m \in \mathbb{Z}$.
3) $[10$ points $]$ Prove that if $\operatorname{gcd}(r, m)=\operatorname{gcd}\left(r^{\prime}, m\right)=1$, then $\operatorname{gcd}\left(r r^{\prime}, m\right)=1$.
[Note: This was a HW problem.]

Proof. Suppose $\operatorname{gcd}\left(r r^{\prime}, m\right)=d \neq 1$. Then, there is some prime p prime such that $p \mid d$, and since $d \mid r r^{\prime}, m$, we have $p \mid r r^{\prime}, m$. Now, since p is prime, by Euclid's Lemma, we have $p \mid r$ or $p \mid r^{\prime}$. We may assume, without loss of generality, that $p \mid r$. But then, $p \mid r, m$ and so $\operatorname{gcd}\left(r r^{\prime}, m\right) \geq p>1$, a contradiction.

Alternatively, if $\operatorname{gcd}(r, m)=\operatorname{gcd}\left(r^{\prime}, m\right)=1$, then there are $a, b, c, d \in \mathbb{Z}$ such that:

$$
a r+b m=1, \quad c r^{\prime}+d m=1
$$

Multiplying them, we get

$$
1=(a r+b m) \cdot\left(c r^{\prime}+d m\right)=a c \cdot r r^{\prime}+\left(a d r+b c r^{\prime}+b d m\right) \cdot m
$$

Since $a c,\left(a d r+b c r^{\prime}+b d m\right) \in \mathbb{Z}$, we have that $\operatorname{gcd}\left(r r^{\prime}, m\right)=1$.
4) [10 points] Let F be a field and $f(x) \in F[x]$. Prove that if $f\left(x^{2}\right)$ is irreducible, then so is $f(x)$.

Proof. We prove the contrapositive. Suppose that $f=g \cdot h$, with $\operatorname{deg}(g), \operatorname{deg}(h)>0$. Then, $f\left(x^{2}\right)=g\left(x^{2}\right) \cdot h\left(x^{2}\right)$. Since $\operatorname{deg}\left(g\left(x^{2}\right)\right)=2 \cdot \operatorname{deg}(g)>0$ and $\operatorname{deg}\left(h\left(x^{2}\right)\right)=2 \cdot \operatorname{deg}(h)>0$, we have that $f\left(x^{2}\right)$ is reducible as well.
5) Suppose that F is a field, $a \in F$ and $f \in F[x]$. Prove that if $(x-a) \mid f$ and $(x-a) \mid f^{\prime}$ [where f^{\prime} is the derivative of f], then $(x-a)^{2} \mid f$.
[Note: This was a HW problem. Hint: You can use the Basic Lemma for polynomials: Assume that $f \mid g$. Then, $f \mid(g+h)$ iff $f \mid h$.]

Proof. Since $(x-a) \mid f$, we have that $f=(x-a) \cdot g$, for some $g \in F[x]$. Then, by the product rule, we have that $f^{\prime}=g+(x-a) \cdot g^{\prime}$.

Now, by the Basic Lemma, since $(x-a) \mid f^{\prime}$ and $(x-a) \mid(x-a) \cdot g^{\prime}$, we have that $(x-a) \mid g$. So, $g=(x-a) \cdot h$, for some $h \in F[x]$ and therefore $f=(x-a) \cdot g=(x-a)^{2} \cdot h$, i.e., $(x-a)^{2} \mid f$.
6) Examples:
(a) [5 points] Give an example of an infinite field F such that for all $a \in F$, we have $2020 \cdot a=0$.

Solution. $\mathbb{F}_{2}(x)$ works.
(b) [5 points] Give an example of an infinite commutative ring which is not a domain.

Solution. $(\mathbb{Z} / 4 \mathbb{Z})[x]$ works.
7) Determine if the polynomials below are irreducible or not in the corresponding polynomial ring. Justify each answer!
(a) $[3$ points $] f=x^{2}-2 x+3$ in $\mathbb{R}[x]$.

Solution. We have that $\Delta=(-2)^{2}-4 \cdot 1 \cdot 3=-8<0$ [no real roots], so f is irreducible.
(b) $[3$ points $] f=x^{2020}-2020$ in $\mathbb{C}[x]$.

Solution. Since \mathbb{C} is algebraically closed and $\operatorname{deg}(f)>1$, we have that f is reducible.
(c) $[3$ points $] f=137 x+389$ in $\mathbb{F}_{521}[x]$.

Solution. Since $\operatorname{deg}(f)=1$, it is irreducible.
(d) [3 points] $f=x^{5}+400 x^{4}-10 x^{3}+120 x^{2}-3000 x+310$ in $\mathbb{Q}[x]$.

Solution. We have $310 \equiv 10 \equiv 2 \not \equiv 0(\bmod 4)$, so $4 \nmid 310$. Then, by Eisenstein's Criterion for $p=2$, we have that f is irreducible.
(e) [4 points] $f=x^{3}+2 x^{2}-2 x+1$ in $\mathbb{Q}[x]$.

Solution. We try the rational root test. The only possible roots are ± 1. But $f(1)=$ $2 \neq 0$ and $f(-1)=4 \neq 0$. So, f has no rational root. Since $\operatorname{deg}(f)=3$, we get that f is irreducible.
(f) [4 points] $f=30003 x^{3}-10 x^{2}+11 x+30001$ in $\mathbb{Q}[x]$.

Solution. Reducing modulo $p=2$, we have $\bar{f}=x^{3}+x+1$. Now $\bar{f}(0)=\bar{f}(1)=1 \neq 0$. So, \bar{f} has no roots in \mathbb{F}_{2}, and since it has degree 3 , it is irreducible in $\mathbb{F}_{2}[x]$. Thus, f is irreducible in $\mathbb{Q}[x]$.
8) Let $\sigma, \tau \in S_{9}$ be given by

$$
\sigma=\left(\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
7 & 5 & 6 & 2 & 4 & 8 & 1 & 9 & 3
\end{array}\right) \quad \text { and } \quad \tau=\left(\begin{array}{lllll}
1 & 3 & 8 & 2
\end{array}\right)\left(\begin{array}{llll}
4 & 5 & 9
\end{array}\right)
$$

(a) [3 points] Write the complete factorization of σ into disjoint cycles.

Solution. $\sigma=(17)(254)(3689)$.
(b) [3 points] Compute τ^{-1}. [Your answer can be in any form.]

(c) [3 points] Compute $\tau \sigma$. [Your answer can be in any form.]

Solution. $\tau \sigma=(17362984)(5)=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & 9 & 6 & 1 & 5 & 2 & 3 & 4 & 8\end{array}\right)$.
(d) [3 points] Compute $\sigma \tau \sigma^{-1}$. [Your answer can be in any form.]

Solution. $\sigma \tau \sigma^{-1}=(7695)(243)$.
(e) [3 points] Write τ as a product of transpositions.

Solution. $\tau=\left(\begin{array}{ll}1 & 2\end{array}\right)(18)(13)(49)(45)$.
(f) [2 points] Compute $\operatorname{sign}(\tau)$.

Solution. $\operatorname{sign}(\tau)=(-1)^{5}=-1\left[\right.$ or $\left.\operatorname{sign}(\tau)=(-1)^{9-4}=-1\right]$.
(g) [3 points] Compute $|\tau|$ (the order of τ in S_{n}).

Solution. $|\tau|=\operatorname{lcm}(4,3)=12$.

