1) [10 points] Find the remainder of 2^{2020} when divided by 7.

Solution. We have:

$$2020 = 288 \cdot 7 + 4$$

$$288 = 41 \cdot 7 + 1$$

$$41 = 5 \cdot 7 + 6$$

$$5 = 0 \cdot 7 + 5.$$

So, $2020 = 4 + 1 \cdot 7 + 6 \cdot 7^2 + 5 \cdot 7^3$. Then, since $2^7 \equiv 2 \pmod{7}$, we have:

$$2^{2020} \equiv 2^{4+1+6+5} = 2^{16} = 2^{2+2\cdot7} \equiv 2^{2+2} = 16 \equiv 2 \pmod{7}.$$

Alternatively, since we have $2^6 \equiv 1 \pmod{7}$ and $2020 = 366 \cdot 6 + 4$, we have:

$$2^{2020} = 2^{366 \cdot 6 + 4} = (2^6)^{366} \cdot 2^4 \equiv 1^{366} \cdot 2^4 = 2^4 = 16 \equiv 2 \pmod{7}.$$

2) [10 points] Find all $x \in \mathbb{Z}$ satisfying [simultaneously]:

$$x \equiv 3 \pmod{5},$$

$$2x \equiv 3 \pmod{7}.$$

If there is no such x, simply justify why.

Solution. The first equation gives x = 3+5n, for $n \in \mathbb{Z}$. Substituting in the second equation, we get $2(3+5n) \equiv 3 \pmod{7}$, i.e., $10n \equiv -3 \pmod{7}$, or $3n \equiv 4 \pmod{7}$.

Now, we have $1 = (-2) \cdot 3 + 1 \cdot 7$, so $n \equiv -8 \equiv 6 \pmod{7}$. Thus, n = 6 + 7m for $m \in \mathbb{Z}$. Thus, we have $x = 3 + 5n = 3 + 5 \cdot (6 + 7m) = 33 + 35m$ for $m \in \mathbb{Z}$. 3) [10 points] Prove that if gcd(r, m) = gcd(r', m) = 1, then gcd(rr', m) = 1.

[Note: This was a HW problem.]

Proof. Suppose $gcd(rr', m) = d \neq 1$. Then, there is some prime p prime such that $p \mid d$, and since $d \mid rr', m$, we have $p \mid rr', m$. Now, since p is prime, by Euclid's Lemma, we have $p \mid r$ or $p \mid r'$. We may assume, without loss of generality, that $p \mid r$. But then, $p \mid r, m$ and so $gcd(rr', m) \geq p > 1$, a contradiction.

Alternatively, if gcd(r, m) = gcd(r', m) = 1, then there are $a, b, c, d \in \mathbb{Z}$ such that:

$$ar + bm = 1,$$
 $cr' + dm = 1.$

Multiplying them, we get

$$1 = (ar + bm) \cdot (cr' + dm) = ac \cdot rr' + (adr + bcr' + bdm) \cdot m.$$

Since $ac, (adr + bcr' + bdm) \in \mathbb{Z}$, we have that gcd(rr', m) = 1.

4) [10 points] Let F be a field and $f(x) \in F[x]$. Prove that if $f(x^2)$ is irreducible, then so is f(x).

Proof. We prove the contrapositive. Suppose that $f = g \cdot h$, with $\deg(g), \deg(h) > 0$. Then, $f(x^2) = g(x^2) \cdot h(x^2)$. Since $\deg(g(x^2)) = 2 \cdot \deg(g) > 0$ and $\deg(h(x^2)) = 2 \cdot \deg(h) > 0$, we have that $f(x^2)$ is reducible as well.

5) Suppose that F is a field, $a \in F$ and $f \in F[x]$. Prove that if (x - a) | f and (x - a) | f' [where f' is the *derivative* of f], then $(x - a)^2 | f$.

[Note: This was a HW problem. Hint: You can use the *Basic Lemma* for polynomials: Assume that $f \mid g$. Then, $f \mid (g + h)$ iff $f \mid h$.]

Proof. Since (x - a) | f, we have that $f = (x - a) \cdot g$, for some $g \in F[x]$. Then, by the product rule, we have that $f' = g + (x - a) \cdot g'$.

Now, by the Basic Lemma, since (x-a) | f' and $(x-a) | (x-a) \cdot g'$, we have that (x-a) | g. So, $g = (x-a) \cdot h$, for some $h \in F[x]$ and therefore $f = (x-a) \cdot g = (x-a)^2 \cdot h$, i.e., $(x-a)^2 | f$.

6) Examples:

(a) [5 points] Give an example of an *infinite* field F such that for all $a \in F$, we have $2020 \cdot a = 0$.

Solution. $\mathbb{F}_2(x)$ works.

(b) [5 points] Give an example of an *infinite* commutative ring which is not a domain.
 Solution. (Z/4Z)[x] works.

7) Determine if the polynomials below are irreducible or not in the corresponding polynomial ring. *Justify each answer!*

(a) [3 points] $f = x^2 - 2x + 3$ in $\mathbb{R}[x]$.

Solution. We have that $\Delta = (-2)^2 - 4 \cdot 1 \cdot 3 = -8 < 0$ [no real roots], so f is irreducible.

(b) [3 points] $f = x^{2020} - 2020$ in $\mathbb{C}[x]$.

Solution. Since \mathbb{C} is algebraically closed and deg(f) > 1, we have that f is reducible.

(c) [3 points] f = 137x + 389 in $\mathbb{F}_{521}[x]$.

Solution. Since $\deg(f) = 1$, it is irreducible.

(d) [3 points] $f = x^5 + 400x^4 - 10x^3 + 120x^2 - 3000x + 310$ in $\mathbb{Q}[x]$.

Solution. We have $310 \equiv 10 \equiv 2 \not\equiv 0 \pmod{4}$, so $4 \nmid 310$. Then, by Eisenstein's Criterion for p = 2, we have that f is irreducible.

(e) [4 points] $f = x^3 + 2x^2 - 2x + 1$ in $\mathbb{Q}[x]$.

Solution. We try the rational root test. The only possible roots are ± 1 . But $f(1) = 2 \neq 0$ and $f(-1) = 4 \neq 0$. So, f has no rational root. Since $\deg(f) = 3$, we get that f is irreducible.

(f) [4 points] $f = 30003x^3 - 10x^2 + 11x + 30001$ in $\mathbb{Q}[x]$.

Solution. Reducing modulo p = 2, we have $\bar{f} = x^3 + x + 1$. Now $\bar{f}(0) = \bar{f}(1) = 1 \neq 0$. So, \bar{f} has no roots in \mathbb{F}_2 , and since it has degree 3, it is irreducible in $\mathbb{F}_2[x]$. Thus, f is irreducible in $\mathbb{Q}[x]$.

8) Let $\sigma, \tau \in S_9$ be given by

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & 5 & 6 & 2 & 4 & 8 & 1 & 9 & 3 \end{pmatrix} \text{ and } \tau = (1\ 3\ 8\ 2)(4\ 5\ 9)$$

(a) [3 points] Write the *complete* factorization of σ into disjoint cycles.

Solution.
$$\sigma = (1\ 7)(2\ 5\ 4)(3\ 6\ 8\ 9).$$

(b) [3 points] Compute τ^{-1} . [Your answer can be in any form.]

Solution.
$$\tau^{-1} = (2 \ 8 \ 3 \ 1)(9 \ 5 \ 4) = (1 \ 2 \ 8 \ 3)(4 \ 9 \ 5) = \begin{pmatrix} 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \\ 2 \ 8 \ 1 \ 9 \ 4 \ 6 \ 7 \ 3 \ 5 \end{pmatrix}$$
.

(c) [3 points] Compute $\tau\sigma$. [Your answer can be in any form.]

- (d) [3 points] Compute $\sigma \tau \sigma^{-1}$. [Your answer can be in any form.] Solution. $\sigma \tau \sigma^{-1} = (7 \ 6 \ 9 \ 5)(2 \ 4 \ 3).$
- (e) [3 points] Write τ as a product of transpositions. Solution. $\tau = (1\ 2)(1\ 8)(1\ 3)(4\ 9)(4\ 5)$.
- (f) [2 points] Compute sign(τ). Solution. sign(τ) = $(-1)^5 = -1$ [or sign(τ) = $(-1)^{9-4} = -1$].
- (g) [3 points] Compute $|\tau|$ (the order of τ in S_n).

Solution.
$$|\tau| = \text{lcm}(4,3) = 12.$$