Final

Math 351 - Spring 2020

May 1st, 2020

Instructions

- Write neatly and legibly!
- Your camera must be on at all times and showing you properly. (You can only leave Zoom when you are done!)
- Leave the sound on (not the mic), so that you can hear incoming private messages or if I need to say something to all.
- You do not need to copy the statements. Just number your answers.
- Each problem must be solved in a different page, but items of the same problem can be in the same page.
- If you have any questions, send me a private message through the chat.
- You can only use your computer to look at the exam or to send me a message.
- When you are done with the exam and are about to start scanning/uploading, send me a private message! (Something like"Scanning now.")
- Make sure your scans are legible before uploading them to Canvas.
- When you are done uploading your solutions, send me a private message. (Something like"Done." No need for the time.) You can then leave Zoom.
- Be prepared to, upon request (via private message), show me your surroundings!

1) [10 points] Find the remainder of 2^{2020} when divided by 7. [No calculators! Show your computations!]
2) [10 points] Find all $x \in \mathbb{Z}$ satisfying [simultaneously]:

$$
\begin{aligned}
x & \equiv 3 \quad(\bmod 5) \\
2 x & \equiv 3 \quad(\bmod 7)
\end{aligned}
$$

If there is no such x, simply justify why.
3) $[10$ points $]$ Prove that if $\operatorname{gcd}(r, m)=\operatorname{gcd}\left(r^{\prime}, m\right)=1$, then $\operatorname{gcd}\left(r r^{\prime}, m\right)=1$.
[Note: This was a HW problem.]
4) [10 points] Let F be a field and $f(x) \in F[x]$. Prove that if $f\left(x^{2}\right)$ is irreducible, then so is $f(x)$.
5) Suppose that F is a field, $a \in F$ and $f \in F[x]$. Prove that if $(x-a) \mid f$ and $(x-a) \mid f^{\prime}$ [where f^{\prime} is the derivative of f], then $(x-a)^{2} \mid f$.
[Note: This was a HW problem. Hint: You can use the Basic Lemma for polynomials: Assume that $f \mid g$. Then, $f \mid(g+h)$ iff $f \mid h$.]
6) Examples:
(a) [5 points] Give an example of an infinite field F such that for all $a \in F$, we have $2020 \cdot a=0$.
(b) [5 points] Give an example of an infinite commutative ring which is not a domain.
7) Determine if the polynomials below are irreducible or not in the corresponding polynomial ring. Justify each answer!
(a) [3 points] $f=x^{2}-2 x+3$ in $\mathbb{R}[x]$.
(b) $[3$ points $] f=x^{2020}-2020$ in $\mathbb{C}[x]$.
(c) [3 points] $f=137 x+389$ in $\mathbb{F}_{521}[x]$.
(d) [3 points] $f=x^{5}+400 x^{4}-10 x^{3}+120 x^{2}-3000 x+310$ in $\mathbb{Q}[x]$.
(e) [4 points] $f=x^{3}+2 x^{2}-2 x+1$ in $\mathbb{Q}[x]$.
(f) [4 points] $f=30003 x^{3}-10 x^{2}+11 x+30001$ in $\mathbb{Q}[x]$.
8) Let $\sigma, \tau \in S_{9}$ be given by

$$
\sigma=\left(\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
7 & 5 & 6 & 2 & 4 & 8 & 1 & 9 & 3
\end{array}\right) \quad \text { and } \quad \tau=\left(\begin{array}{llll}
1 & 3 & 8 & 2
\end{array}\right)\left(\begin{array}{ll}
4 & 5
\end{array}\right)
$$

(a) [3 points] Write the complete factorization of σ into disjoint cycles.
(b) [3 points] Compute τ^{-1}. [Your answer can be in any form.]
(c) [3 points] Compute $\tau \sigma$. [Your answer can be in any form.]
(d) [3 points] Compute $\sigma \tau \sigma^{-1}$. [Your answer can be in any form.]
(e) [3 points] Write τ as a product of transpositions.
(f) $[2$ points] Compute $\operatorname{sign}(\tau)$.
(g) [3 points] Compute $|\tau|$ (the order of τ in S_{9}).

