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*H 1.37 For all odd n = 1, prove that the:
integers, such that

Te 1s @ polynomial &n(x), all of whos

e coefficients are

sin(nx) = g, (sin x).
1.38 () What is the coefficient of x!6 in (1 +x)%?
H {ii) Hovu: many ways are there to choose 4 colors from a palette containing
20 different colors? "y

1.39 Give at least two different proofs that a set X with n elements has exactly 2" subsets
H1.40 A weekly lottery asks you to select 5 different numbers between 1 and 45. At the we.ek";
end. 5 such numbers are drawn at random, and you win the jackpot if all your number;
match the drawn numbers. What is your chance of winning? : ‘

paints of

Definition. Define the n th derivative f")(x} of a function f(x) inductively: set £ (x) 1o
be fix)and, if n > 0, define FDG) = (FMy (). 3 :

1.41 Assume that “term-by-term” differentiation holds for power series: if f(x) = co+ ¢jx +
€2X" + -+ +ux" + - - - then the power series for the derivative fix) s

Fix)y=ci +20% 43302 & -+ ne eV 4 ...

(i)  Prove that £(0) = ¢.
(ii)  Prove, for all » > 0, that

F™M(x) =nlcy + (n + Dlcpsix + x2ga(x).

where g, (x) is some power series .
(iii) Prove that ¢, = ) (1)(0)/n! for all n > 0. (Of course. this is Taylor's for-
mula.)
*H1.42 (Leibniz) A function f : R — R is called a C®~function if it has an nth derivative
S (x) for every n > 0. Prove that if f and g are C*°-functions, then

(f8) " (x) = Z”:(Z)f""(x) "M ).

k=0

1.43 Find /.
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If z = rlcos @ 4 isin 8], show that

*1.44 (i 5
: w = Y [cos(@/n) +1 sin(@/n)]
is an nth root of z, where r = 0. 4 A — Pl -
Sh that every nth root of z has the form &~ w,
(i) oW N
of unity and k = 0. 1, 2, .. 5ix n
145 H() Findv8+ 15i. A
H (i) Find all the fourth roots of 8 + 151,

—+ 1.3 GREATEST COMMON DIVISORS

e f crs
i ion fi ar sets of numbe
This is an appropriate time to introduce notation for some popul

{ i atur: s).
other than Z (denoting the integers) and N (denoting the natural number:

ract at is j form a /b.
— the set of all rational numbers (or fractions), that is, all numbers of the f ¥

™
i where a and b are integers and b # 0 (after the word quotient)
R = the set of all real numbers
C = the set of all complex numbers
Long division involves dividing an integer # by a nonzero integer a, giving

b r
e =¢[+f.

a a

where ¢ is an integer and 0 < r/a < 1. We clear denominators to get a statement
wholly in Z.

— Theorem 1.32 (Division Algorithm). Given integers a and b with a # 0, there exist
unique integers q and r with

b=ga+r and 0<r <|al.

Proof.  We will prove the theorem in the special case in which @ > 0 and b > 0
Exercise 1.47 on page 53 asks the reader to complete the proof. Long division involves
finding the largest integer ¢ with ga < b, which is the same thing as finding the
smallest nonnegative integer of the form b — qa. We formalize this.

The set C of all nonnegative integers of the form b —na, where n > 0, is not empty
because it contains b = b — 0a (we are assuming that b > 0). By the Least Inteqedr
Axiom, C contains a smallest element, say, r = b — ga (for some q = 0); of cou&e.
r > 0, by its definition. If r > 4, then

b‘(q-*-l)a:b—qa—a:r-az(),
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divisor of @ and b, then so is —c. Since one of ¢ js gy,

least one of @ and b is nonzero, then (a on divisor d is their

If ¢ is a common :
the g is always nonnegative. 112

Negative

b) > 0, — Corollary 1.36. Let a and b be integers. A nonnegative comm

ged if and only if ¢ | d for every common divisor c.

at every common divisor ¢ ofaandbisa
at the end of the proof of Theorem 133,
e ged of @ and b, and let d’ be
Thus, d’ < d,

is any integer, then faitss r P
Proof. Necessity (i.e., the implication =) Th

pifp b divisor of d = sa-+tb, has already been proved
Sufficiency (i.e., the implication =) Let d denote th

stion 134, [j‘pisaprimeandb

god(p. ) = l 1 otherwise.

Proof. A common divisor ¢ of p and b is, of course, a divisor of p. Byt (he only

posmw&v,-mofpmpandl,andso(p.b) == porl;it iSpifp | b, and T
otherwise. @

— Definition. A linear combination of integers a and b is an integer of the form

sa +th,

where s and ¢ are integers.
The next result is one of the most useful properties of ged'’s.

_, Theorem 1.35. Ifa and b are integers, then ged(a, b) is a linear combination of q
and b.

Proof. 'We may assume that at least one of @ and b is not zero (otherwise, the ged is
0 and the result is obvious). Consider the set / of all the linear combinations:

I={sa+tb:s,tinZ}.

Both @ and b are in I (take s = 1 and # = O or vice versa). It follows that / contains
positive integers (if a # 0, then 7 contains *a), and hence the set P of all those
positive integers that lie in / is nonempty. By the Least Integer Axiom, P contains a
smallest positive integer, say, d, which we claim is the ged.

Since d is in 1, it is a linear combination of @ and b: there are integers s and  with

d = sa +tbh.

Let us show that d is a common divisor by trying to divide each of @ and b by d.
The division algorithm gives a = gd + r, where 0 < r < d. If r > 0, then
r=a—gqgd=a—q(sa+th)= (1 —gs)a+ (—qt)bisin P,
contradicting d being the smallest element of P. Hence r = 0 and d | a; a similar
argument shows that d | b.
_ Finally, if ¢ is a common divisor of @ and b, then a = ca’ and b = cb’, so that ¢
divides d, ford = sa + th = c(sa’ + tb'). Butif ¢ | d, then |c| < d, and so d is the
gedofaandb.

E“"‘ ged(a, b) and if ¢ is a common divisor of @ and b, then ¢ < d. The next
) ‘»ihu ws that more is true: ¢ | d for every common divisor c.

e iy e TR

a nonnegative common divisor divisible by every common dIVISOI.('. T
because ¢ < d is for every common divisor ¢. On the other hand, 4 itself is a common

divisor, and so d | d', by hypothesis. Hence, d = d',andsod =d'. e

The proof of Theorem 1.35 contains an idea that will be used again.

— Corollary 1.37. Let I be a subset of Z such that

(1) Oisin I,
(ii) ifa and b are in I, then a — bisinl;
(iii) ifaisin I and q is in Z, then ga is in &

Then there is a nonnegative integer d in I with I consisting precisely of all the multiples
of d.

Proof. If I consists of only the single integer 0, take d = 0. If / contains a nonzero
integer a, then (—1)a = —a is in I, by (iii). Thus, / contains *a, one of which is
positive. By the Least Integer Axiom, / contains a smallest positive integer; call it d.

We claim that every element a in / is a multiple of d. The division algorithm gives
integers ¢ and r witha = gd + r, where 0 < r < d. Since d is in I, so is gd, by (iii),
and so (ii) gives r = a — qd in I. But r < d, the smallest positive element of /, and
sor = 0. thus, a is a multiple of d.

The next result, called Euclid's lemma, is of great interest, for it gives one of the
most important characterizations of prime numbers. Euclid’s lemma is used frequently
(at least ten times in this chapter alone), and an analog of it for irreducible polynomials
i..; eq{ually important. Looking further ahead, this lemma motivates the notion of prime
tdeai.

Theorem 1.38 (Euclid’s Lemma). If p is a prime and p | ab, then p | a or p | b.
More generally, if a prime p divides a product a as - - - a,, then it must divide at least
one of the factors a;. Conversely, if m > 2 is an integer such that m | ab always
implies m | a orm | b, then m is a prime. g

Proof. Assgme that p { a; that is, p does not divide a; we must show that p | b. Now
th.e ged (p,a) = 1, by Proposition 1.34. By Theorem 1.35, there are integers s and r
with 1 = sp + ta, and so

b =spb+tab.
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: . uation x2 = 2, but there is a geometric solutio
solution to the ;q B.C.), this problem was resolved by splitting maltli;
i - lines: algebra and geometry. This resolution is pro
into wo d mﬂtlft‘ﬂﬂlzsplkﬂ age of classical mathematics declinid ?n Eu
of the main oman Empire. For example, there were geometric ways of v?m
o jon, multiplication, and division of segments (see B Z;q)
g £ rtually impossible to do any algebra. A sophisticated geometric aroyme..
}:;e“: Eﬁoxns znd given in Fuclid’s Elements) was needed to prove the Veili](:?,e:;
amultiplicaﬁoasnyingﬂmifa:b=c:d.fhcna ic=b:d.
We quote van der Waerden, Science Awakening, page 125:
Now we say that the length of the diagonal is the “irrational num-
ber” +/2, and we feel superior to the poor Greeks who “did not know ir-
rationals.” But the Greeks knew irrational ratios very well ... That they
did not consider /2 as a number was not a result of ignorance, but of strict
adherence to the definition of number. Arithmos means quantity, there-
fore whole number. Their logical rigor did not even allow them to admit
fractions; they replaced them by ratios of integers.

For the Babylonians, every segment and every area simply represented a
number ... When they could not determine a square root exactly, they
calmly accepted an approximation. Engineers and natural scientists have
| w | always done this. But the Greeks were concerned with exact knowledge,
2 with “the diagonal itself,” as Plato expresses it, not with an acceptable
approximation.
In the domain of numbers (positive integers), the equation x* = 2 cannot
be solved, not even in that of ratios of numbers. But it is solvable in the
domain of segments; indeed the diagonal of the unit square is a solution.
‘ Consequently, in order to obtain exact solutions of quadratic equations,
we have to pass from the domain of numbers (positive integers) to that of
~ geometric magnitudes. Geometric algebra is valid also for irrational seg-
~ ments and is nevertheless an exact science. It is therefore logical necessity.
~ not the mere delight in the visible, which compelled the Pythagoreans to
~ transmute their algebra into a geometric form.

- Even though the Greek definition of number is no longer popular. their dichotomy
| persists. For example, almost all American high schools teach one year of algebra
geometry, instead of two years in which both subjects are
of defining number has arisen several times since the
ns had to deal with negative numbers
of cubic polynomials in Chapter 5); the
dates from the late 1800s. There

By the
CMaticg
ably one
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Die ganzen Zahlen hat der liebe Gott gemacht, alles andere ist Menschen-
werk. (God created the integers; everything else is the work of Man.)

Even today some logicians argue for a new definition of number.

Our discussion of ged’s is incomplete. What is ged(12327, 2409)? To ask the
question another way, is the expression 2409/ 12327 in lowest terms? The next result
not only enables one to compute ged’s efficiently. it also allows one to compute inte-
gers s and t expressing the ged as a linear combination.!” Before giving the theorem,
consider the following example. Since (2,3) = 1. there are integers s and ¢ with

= 25 + 3t. A moment’s thought givess = —land r = 1 but another moment’s
thought gives s = 2 and r = —1. We conclude that the coefficients s and t expressing
the ged as a linear combination are not uniquely determined. The algorithm below,
however, always picks out a particular pair of coefficients.

— Theorem 1.44 (Euclidean Algorithm). Let a and b be positive integers. There is

an algorithm that finds the gcd d = (a, b), and there is an algorithm that finds a pair
of integers s and t withd = sa + tb.

Remark. The general case for arbitrary g and b follows from this, for
(a,b) = (lal, |b]). <«

Prjoo_f. The idea is to keep repeating the division algorithm (we will show where
this idea comes from after the proof is completed). Let us set b = rg and a = r|.

Repeated application of the division algorithm gives integers g;, positive integers r;,
and equations:

b=gqia+r, rn<a

Sl = P St r3 <ra

[2 = d3iasmtid) T4 <r3
I'n—3 = gn-2'n—2 + p—|, Tnet] < Fneo:
-2 = qn—1rn—| + Iy, Tn < Fp—1

Tn—1 = (nTyn

17E s . . . g .
o, v;lry posmv; nl;tegcr I'S a producl:t of primes, and this is used, in Proposition 1.55, to compute
ged’s. However, finding prime factorizations of large numbers is notoriously difficult; indeed, it is
the basic reason why public key cryptography is secure, :
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remember that all ¢ and r; are explicitly known from the division algorithm)

fhatthem is a last remainder; the pmt;,cduf?. g because the remainders form al stri Jowest terms.
ing sequence of nonnegative integers (indeed, the number of SIePS needeq trictly

than a. Proposition 1.46 gives a smaller bound on the number of stepy) 15 lesg

Notice

] (2)
that the last remainder d = , ; BT 14418
We use Corollary 1.36 to show t : ! Tn 18 the geq. 78] =5 x[14]+(8]
rewrite the top equations of the Euclidean algorithm without subscripts, €d. Let yg % i Eé:] . E (3)
L—l 7% et ] (4)
b=qfl+r @21X14_1+L2_1 ;
a=gq'r+s. @=3x§. (5)

If ¢ is a common divisor of a and b, then the first equation shows that ¢ | . Going e
to the second equation, we now know that ¢ | a and ¢ | 7, and so ¢ | s. Con;inmnn
down the list, we see that ¢ divides every remainder; in particular, ¢ | 4. g

Let us now rewrite the bottom equations of the Euclidean algorithm w

The Euclidean algorithm gives (326, 78) = 2
We now express 2 as a linear combination of 326 an
up using the equations above.

d 78, working from the bottom

; ithout syp. 85
g 2=[8]-1[6] byEq. 4
A B :@-1(@4@_‘) by Eq. (3)
o 3] 1]
1=U K+ s
i Mol ¥ — 4 | - 2
k= vd =2([78] - S14]) - 114] byEq. @
from the bo have d | k and d | d, so that d =278] - 1[14]
Going from ¢ ttom up, we have an . S0 that d | h: going up again — —
d|handd | kimplyd | g. Working upward ultimately gives d | a and 4 | b. We =2{78 |- 11 ( —-478]) byEq. (1)
conclude that 4 is a common divisor. But d = (a, b) because we saw, in the precedin A _
paragraph, that if ¢ is any common divisor, then ¢ | d. 7 =46[78] - 11[326;

We now find s and 1, again working from the bottom up. Rewrite the equation

' : : thus,s =46andr = —11.
h=uk +dasd = h — u'k, and substitute k = g — u’h from the equation above jt:

Dividing numerator and denominator by the gcd, namely, 2, gives 78/326 =
ion is in 1 Lt !
d=h—w'k=h—u'(g—u'h)=(+u"u)h — u’g. 39/163, and the last expression is in lowest terms. <

The Greek terms for the Euclidean algorithm are antanairesis or anthyphairesis,
either of which may be freely translated as “back and forth subtraction.” Exercise 1.61
on page 54 says that (b, a) = (b—a, a). If b—a > a, repeat to get(b,a) = (b—a,a) =

Thus, d is a linear combination of g and ». Continue this procedure, replacing h by
f —ug, and so on, until d is written as a linear combination of a and b. e

_ . : . b — 2a,a). Keep subtracting until a pair a and b — ga (f i i
We say that n is the number of steps in the Euclidean algorithm. for one does not 5, o qga <aa Tiug ??,— r:cbm_g;: lwi;elz)aj? <a tg:n( e i e
know whether r,, in the (n — 1)st step ; : ! ) |
(b,a)=(b-a,a)=(b—-2a,a)=---= (b —gqa,a) = (r,a).
Tn—2 = Gp-1Tp-1 + 1y
: : T . : Now change direction: repeat the procedure beginning with the pair @)=
is the ged until the division algorithm is applied to mieqandir,. ‘ fora > r: eventually one reaches (d, 0) = d. : : SR
For example, antanairesis computes the ged (326, 78) as follows:
Example 1.45. '
Find (326,78). express it as a linear combination of 326 and 78, and write 78/326 in | (326,78) = (248,78) = (170, 78) = (92, 78) = (14, 78).

.
















