Review

Definition
Let \(R \) be a commutative ring.

- An ideal \(I \) is **principal**, if there is \(a \in R \) such that

\[
I = (a) \overset{\text{def}}{=} aR = \{ ax : x \in R \}.
\]

- A **domain** \(R \) is a **principal ideal domain (PID)** if every ideal of \(R \) is principal.

Example
The following are PIDs: \(\mathbb{Z} \), \(F \) where \(F \) is a **field**, \(F[x] \) where \(F \) is a **field**.

Note that \(\mathbb{Z}[x] \) is **not** a PID, as \((2, x) \) is not principal.
Definition
Let \(R \) be a domain. Then:

- \(b \) is an **associate** of \(a \) if there is \(u \in R^\times \) such that \(b = au \). We shall write \(b \sim a \). Note that \(a = bu^{-1} \) [and \(u^{-1} \in R^\times \)], and hence also \(a \sim b \). Therefore, we may say \(a \) and \(b \) are **associates**.
 [In fact, \(\sim \) is an *equivalence relation*.]

- We say that \(a \) **divides** \(b \), or \(b \) is a **multiple** of \(a \), if \(b = ac \) for some \(c \in R \). We write \(a \mid b \).
 [So, \(b \in (a) \) iff \(a \mid b \).]
 Note: \(a \sim b \) iff \(a \mid b \) and \(b \mid a \) iff \((a) = (b) \).

- An element \(a \notin R^\times \cup \{0\} \) is **irreducible** if the only divisors are units or associates of \(a \).

- An element \(p \notin R^\times \cup \{0\} \) is **prime** if whenever \(p \mid ab \), then either \(p \mid a \) or \(p \mid b \).
 [This means \((p) \) is a prime ideal iff \(p \) is prime.]

Note that associates of primes (resp. irreducibles) are also primes (resp. irreducibles). Also, primes are always irreducible.
Definition
Let R be a *domain*. Then:

- d is a **GCD** of \(\{a_1, \ldots, a_n\} \subseteq R \) if $d \mid a_i$ for all i and if $e \mid a_i$ for all i, then $e \mid d$. [Note that two GCDs must be *associates*.]

- $a, b \in R$ are **relatively prime** if their GCD is a unit.

- m is a **LCM** of \(\{a_1, \ldots, a_n\} \subseteq R \) if $a_i \mid m$ for all i and if $a_i \mid n$ for all i, then $m \mid n$. [Note that two LCMs must be *associates*.]
Definition

A domain R is a **unique factorization domain (UFD)** if for all $a \in R$, with $a \notin R^\times \cup \{0\}$:

- **Finite Factorization**: there is $u \in R^\times$ and p_1, \ldots, p_n irreducible such that $a = u \cdot p_1 \cdots p_n$; and

- **Uniqueness**: if also $a = v \cdot q_1 \cdots q_m$, where $v \in R^\times$ and the q_i’s are irreducible, then $m = n$ and after possibly reordering, we have that p_i and q_i are associates.

Goal: show that PIDs are UFDs.
GCDs

Theorem
Let R be a PID and $a_1, \ldots, a_n \in R \setminus \{0\}$, with $n \geq 1$. Then there is a GCD, say d, of the a_i’s, and $r_i \in R$ such that $d = \sum r_i a_i$.
[Thus, any GCD of the a_i’s is a linear combination of them.]

Proof.
Idea: $(a_1, \ldots, a_n) = (d)$.

Corollary
Let R be a PID. Then every irreducible is prime. [I’ve shown an example of R not a PID where this is false! Remember the converse is always true!] Also note that this is true for UFDs! [Exercise.]

Corollary
A non-zero ideal (a) in a PID is maximal iff a is prime [or irreducible].
Noetherian Rings

Definition
Let R be a ring. R satisfies the *ascending chain condition* (ACC) or is *noetherian* if every ascending chain of ideals:

$$I_1 \subseteq I_2 \subseteq I_3 \subseteq \cdots,$$

eventually becomes constant [i.e., $I_n = I_{n+1} = I_{n+1} = \cdots$ for some n large enough].
Theorem

PIDs are Noetherian.

Proof.
Let:

$$ (a_1) \subseteq (a_2) \subseteq (a_3) \subseteq \cdots. $$

Let $I = \bigcup_{i=1}^{\infty} (a_i)$. Since R is a PID, there is $a \in R$ such that $I = (a)$. Then $(a_i) \subseteq I = (a)$, i.e., $a | a_i$ for all i.

Also, since $a \in I$, $a \in (a_n)$ for some n, i.e., $a_n | a$. Since $(a_n) \subseteq (a_k)$ for all $k \geq n$, we have that $a_k | a$ for all $k \geq n$. Since also, $a | a_i$ for all i, we have that a and a_k are associates for all $k \geq n$. Thus, $(a) = (a_k)$ for all $k \geq n$ and hence the sequence is eventually constant.

\square
Maximal Ideal

Corollary

In a noetherian ring [and in particular in a PID], every proper ideal [i.e., different from R] is contained in a maximal ideal.

Proof.
Suppose not and let \(I \) be an ideal not contained in a maximal ideal. Since \(I \) is not maximal, \(I \subsetneq I_2 \neq R \), where \(I_2 \) is an ideal. \(I_2 \) is not maximal, since \(I \) is not contained in a maximal ideal. Repeating, we would get a chain

\[
I \subsetneq I_2 \subsetneq I_3 \subsetneq \cdots ,
\]

which is a contradiction. Thus, \(I \) is contained in a maximal ideal.

Note: This is in fact true for all rings with 1. The proof uses Zorn’s Lemma.
Divisibility by Irreducible

Theorem
Let R be a noetherian domain [e.g., a PID]. Then, every $a \in R$, with $a \notin R^\times \cup \{0\}$, is divisible by an irreducible.

Proof.
Let a as above. If a is irreducible, then we are done. Suppose it is not. Then, $a = a_1 b_1$, where $a_1, b_1 \notin R^\times \cup \{0\}$. If either a_1 or b_1 is irreducible, we are done. So suppose not. Repeating for a_1, we have $a_1 = a_2 b_2$, and again if either is irreducible, we are done [as $a = (a_2 b_2) b_1$].
Suppose this procedure does not end. Then, we have:

\[(a) \subsetneq (a_1) \subsetneq (a_2) \subsetneq (a_3) \subsetneq \cdots\]

which is a contradiction. So, eventually, this has to stop, and a is divisible by some irreducible.

Finite Factorization

Theorem
Let R be a noetherian domain [e.g., a PID]. Then, we have finite factorization in R.

Proof.
Let $a \in R$, with $a \notin R^\times \cup \{0\}$. Since R is noetherian, a is divisible by an irreducible, say $a = p_1 \cdot a_1$, p_1 irreducible. If $a_1 \in R^\times$, we are done. So, suppose not. Then, as before, $a_1 = p_2 \cdot a_2$, p_2 irreducible. [So, $a = p_1 p_2 a_2$.] Repeat. It must stop, as otherwise:

$$(a) \subsetneq (a_1) \subsetneq (a_2) \subsetneq (a_3) \subsetneq \cdots$$

So, $a = p_1 \cdots p_n a_n$, where p_i's are irreducible and $a_n \in R^\times$. \hfill \square
Theorem (Fundamental Theorem of Arithmetic)

If R is a PID, then R is a UFD.

Proof.
Since R is a PID, it is notherian, and as seen above, we have finite factorization. Thus, it only remains to show uniqueness. Suppose

$$a = p_1 \cdots p_n = vq_1 \cdots q_m, \quad p_i, q_j \text{ irreducibles.}$$

Since p_1 is prime [as R is a PID], it must divide one of the q_j’s. WLOG, assume $p_1 \mid q_1$. Since both are irreducible, we must have $p_1 \sim q_1$. Now repeat for p_2, p_3, \ldots. [Exercise: Write a proper proof.]
Corollary

Let R be a PID and $a \in R$, with $a \not\in R^\times \cup \{0\}$. Then, there is $u \in R^\times$ and p_1, \ldots, p_k non-associate primes such that

$$a = up_1^{n_1} \cdots p_k^{n_k}.$$

Moreover, if also

$$a = vq_1^{m_1} \cdots q_l^{m_l},$$

where $v \in R^\times$ and q_1, \ldots, q_l are non-associate primes, then $k = l$ and after reordering for each i we have p_i and q_i are associates and $n_i = m_i$.