1) Let $\alpha_{1} \stackrel{\text { def }}{=} 8-8 \mathrm{i}, \alpha_{2} \stackrel{\text { def }}{=} 10+15 \mathrm{i}$ and $\beta \stackrel{\text { def }}{=} 2-3 \mathrm{i}$, and let $I \stackrel{\text { def }}{=}(\beta)$ be the principal ideal of $\mathbb{Z}[i]$ generated by β.
(a) Compute the quotient and remainders of the divisions of α_{1} and α_{2} by β ?

Solution. We divide α_{1} by β :

$$
\frac{8-8 \mathrm{i}}{2-3 \mathrm{i}}=\frac{(8-8 \mathrm{i})(2+3 \mathrm{i})}{(2-3 \mathrm{i})(2+3 \mathrm{i})}=\frac{40+8 \mathrm{i}}{13}=\underbrace{3+\mathrm{i}}_{q_{1}}+\frac{1-5 \mathrm{i}}{13} .
$$

Hence, $\alpha_{1}=\beta \cdot q_{1}+r_{1}$, where $r_{1}=(8-8 \mathrm{i})-(2-3 \mathrm{i})(3+\mathrm{i})=-1-\mathrm{i}$. So,

$$
(8-8 \mathrm{i})=(2-3 \mathrm{i}) \underbrace{(3+\mathrm{i})}_{q_{1}}+\underbrace{(-1-\mathrm{i})}_{r_{1}} .
$$

[Note $\left|r_{1}\right|^{2}=2<|2-3 \mathrm{i}|^{2}=13$.]
We divide α_{2} by β :

$$
\frac{10+15 \mathrm{i}}{2-3 \mathrm{i}}=\frac{(10+15 \mathrm{i})(2+3 \mathrm{i})}{(2-3 \mathrm{i})(2+3 \mathrm{i})}=\frac{-25+60 \mathrm{i}}{13}=\underbrace{-2+5 \mathrm{i}}_{q_{2}}+\frac{1-5 \mathrm{i}}{13} .
$$

Hence, $\alpha_{2}=\beta \cdot q_{2}+r_{2}$, where $r_{2}=(10+15 \mathrm{i})-(2-3 \mathrm{i})(-2+5 \mathrm{i})=-1-\mathrm{i}$. So,

$$
(10+15 \mathrm{i})=(2-3 \mathrm{i}) \underbrace{(-2+5 \mathrm{i})}_{q_{2}}+\underbrace{(-1-\mathrm{i})}_{r_{2}} .
$$

$\left[\right.$ Note $\left|r_{2}\right|^{2}=2<|2-3 \mathrm{i}|^{2}=13$.]
(b) Is $\alpha_{1} \equiv \alpha_{2}(\bmod I)$?

Solution. Yes. Since $r_{1}=r_{2}=(-1-\mathrm{i})$, we have $\alpha_{1}-\alpha_{2}=\left((2-3 \mathrm{i})(3+\mathrm{i})+r_{1}\right)-((2-$ $\left.3 \mathrm{i})(-2+5 \mathrm{i})+r_{2}\right)=(2-3 \mathrm{i})((3+\mathrm{i})-(-2+5 \mathrm{i}))=(2-3 \mathrm{i})(5-4 \mathrm{i})$. Hence, $\alpha_{1}-\alpha_{2} \in I$, i.e., indeed $\alpha_{1} \equiv \alpha_{2}(\bmod I)$.
2) Let $\zeta_{11} \stackrel{\text { def }}{=} \mathrm{e}^{2 \pi \mathrm{i} / 11}$. Prove that there are exactly four intermediate extension of $\mathbb{Q}\left[\zeta_{13}\right] / \mathbb{Q}$ [including \mathbb{Q} and $\left.\mathbb{Q}\left[\zeta_{13}\right]\right]$. [You do not have to find them.]

Proof. As seen in class, for all prime p, we have $\mathbb{Q}\left[\zeta_{p}\right] / \mathbb{Q}$ is Galois, with $G\left(\mathbb{Q}\left[\zeta_{p}\right] / \mathbb{Q}\right) \cong C_{p-1}$. Hence, since $G \stackrel{\text { def }}{=} G\left(\mathbb{Q}\left[\zeta_{11}\right] / \mathbb{Q}\right) \cong C_{10}$ is cyclic, it has exactly one subgroup [which is in fact also cyclic] for each divisor of the order, i.e., one subgroup of order 1 [i.e., \{id\}], one subgroup of order 2, one subgroup of order 5, and one subgroup of order 10 [i.e., G].

By the Main Theorem of Galois Theory [since $\left.Q\left[\zeta_{11}\right] / \mathbb{Q}\right]$ is Galois], there is a one-toone correspondence between subgroups of G and intermediate extensions of $\mathbb{Q}\left[\zeta_{11}\right] / \mathbb{Q}$. Since there are four subgroups, there are four intermediate fields, with degree equal to the indices: 1 [i.e., $\left.\mathbb{Q}\left[\zeta_{11}\right]\right], 2,5$, and 10 i.e, $\left.\mathbb{Q}\right]$.
3) Let R be a ring [which you can assume is commutative with identity, but it is not necessary] and $a \in R$. Let $\phi: R \rightarrow R^{\prime}$ be a homomorphism such that $a \in \operatorname{ker} \phi$. Prove that the $\operatorname{map} \psi: R /(a) \rightarrow R^{\prime}$, defined by $\psi(b+(a)) \stackrel{\text { def }}{=} \phi(b)$ gives a well-defined [you have to prove that it is well-defined] ring homomorphism.

Proof. 1. Well-defined: Let $b^{\prime} \in R$ such that $b+(a)=b^{\prime}+(a)$. Then, we have that there is $r a \in(a)$ [with $r \in R$], such that $b^{\prime}=b+r a$. Then

$$
\begin{aligned}
\psi\left(b^{\prime}+(a)\right) & =\phi\left(b^{\prime}\right)=\phi(b+r a) & & {[\text { defn. of } \psi] } \\
& =\phi(b)+\phi(r) \phi(a) & & {[\phi \text { is a homom. }] } \\
& =\phi(b)+0_{R}=\phi(b) & & {[a \in \operatorname{ker} \phi] } \\
& =\psi(b+(a)) & & {[\text { defn. of } \psi] }
\end{aligned}
$$

2. Takes $1_{R /(a)}$ to $1_{R^{\prime}}$: We have:

$$
\begin{aligned}
\psi\left(1_{R /(a)}\right) & =\psi\left(1_{R}+(a)\right) & & \\
& =\phi\left(1_{R}\right) & & {[\text { defn. of } \psi] } \\
& =1_{R^{\prime}} & & {[\phi \text { is a homom. }] }
\end{aligned}
$$

3. Additive: We have:

$$
\begin{aligned}
\psi((b+(a))+(c+(a))) & =\psi((b+c)+(a)) & & \text { [addition in } R /(a)] \\
& =\phi(b+c) & & \text { [defn. of } \psi] \\
& =\phi(b)+\phi(c) & & {[\phi \text { is a homom.] }} \\
& =\psi(b+(a))+\psi(c+(a)) & & {[\text { defn. of } \psi] }
\end{aligned}
$$

4. Multiplicative: We have:

$$
\begin{aligned}
\psi((b+(a)) \cdot(c+(a))) & =\psi((b c)+(a)) & & {[\text { mult. in } R /(a)] } \\
& =\phi(b c) & & {[\text { defn. of } \psi] } \\
& =\phi(b) \cdot \phi(c) & & {[\phi \text { is a homom. }] } \\
& =\psi(b+(a)) \cdot \psi(c+(a)) & & {[\text { defn. of } \psi] }
\end{aligned}
$$

4) Prove that if F is a field and $F[[x]]$ represents formal power series over F [as in the second extra-credit problem], then all non-zero ideals of $F[[x]]$ are of the form $\left(x^{n}\right)$ where n is a non-negative integer. [You can use any fact in the statement of the extra-credit problem.]

Proof. Since $F[[x]]$ is an Euclidean domain [by the extra credit problem], it is a PID. So, if I be a non-zero ideal of $F[[x]]$, there is $a \in F[[x]]-\{0\}$ such that $I=(a)$.

By part (b) of the extra credit problem, we can write $a=x^{n} a^{\prime}[n \stackrel{\text { def }}{=} \sigma(a)$ in the extra credit problem] where a^{\prime} is a unit. Then, a and x^{n} are associates, and hence $(a)=\left(x^{n}\right)$.
5) Construct a field with 8 elements. [Hint: Extend some known field.]

Solution. Let $f=x^{3}+x+1 \in \mathbb{F}_{2}[x]$. Then, $f(0)=1, f(1)=1$, and f has no root in \mathbb{F}_{2}. Since f has degree 3, this means that f is irreducible. Hence, $F \stackrel{\text { def }}{=} \mathbb{F}_{2}[x] /\left(x^{3}+x+1\right)$ is an extension field of \mathbb{F}_{2} of degree 3 .

Thus, if $\alpha \stackrel{\text { def }}{=} \bar{x} \in F$, we have that $F=\mathbb{F}_{2}[\alpha]$, with \mathbb{F}_{2}-basis $\left\{1, \alpha, \alpha^{2}\right\}$, and hence F has 8 elements: $\left\{0,1, \alpha, 1+\alpha, \alpha^{2}, 1+\alpha^{2}, \alpha+\alpha^{2}, 1+\alpha+\alpha^{2}\right\}$.
6) Let F be a field of characteristic $p \neq 0$, for which the polynomial $f(x) \stackrel{\text { def }}{=} x^{p}-x-a \in F[x]$ is irreducible. Let α be a root of $f(x)$ [in some extension of F].
(a) Prove that $\alpha+1$ is also a root of $f(x)$.

Proof. Since we are in characteristic p, we have that $(a+b)^{p}=a^{p}+b^{p}$. So, $f(\alpha+1)=$ $(\alpha+1)^{p}-(\alpha+1)-a=\alpha^{p}+1-\alpha-1-a=\alpha^{p}-\alpha-a=f(\alpha)=0$ [since α is a root of f by hypothesis].
(b) Prove that $F[\alpha]$ is the splitting field of $f(x)$ over F. [Hint: Use (a) to find all roots of f.]

Proof. Repeating the argument above, we have that since $\alpha+1$ is a root, then $\alpha+2$ is a root. In this way, we have that $\alpha, \alpha+1, \ldots, \alpha+(p-1)$ are roots. [Note that $\alpha+p=\alpha$.] Since these gives us p distinct roots of f, and $\operatorname{deg} f=p$, these are all roots of f. But, $\alpha+i \in F[\alpha]$. So, $F[\alpha]$ is the splitting field.
(c) Prove that $G(F[\alpha] / F) \cong C_{p}$.

Solution. Since $F[\alpha]$ is a splitting field of $f(x)$ over F, we have that $F[\alpha] / F$ is Galois. Hence, $|G(F[\alpha] / F)|=[F[\alpha]: F]$. But since f is monic and irreducible [by hypothesis] and $f(\alpha)=0$, we have that $f=\min _{\alpha, F}$, and so $|G(F[\alpha] / F)|=[F[\alpha]: F]=\operatorname{deg} f=p$. Since p is prime, and $G(F[\alpha] / F) \cong C_{p}$ [every group of prime order is cyclic].
7) Let $K \stackrel{\text { def }}{=} \mathbb{Q}[\sqrt[4]{2}, i]$.
(a) Find $[K: \mathbb{Q}]$.

Solution. We have that $[K: \mathbb{Q}]=[K: \mathbb{Q}[\sqrt[4]{2}] \cdot[\mathbb{Q}[\sqrt[4]{2}: \mathbb{Q}]$.
Since $x^{4}-2$ is irreducible [by a Eisenstein's criterion], we have that $[\mathbb{Q}[\sqrt[4]{2}: \mathbb{Q}]=4$.
Moreover, since $\mathbb{Q}[\sqrt[4]{2}] \subseteq \mathbb{R}$, but $K \nsubseteq \mathbb{R}$, we have $K \neq \mathbb{Q}[\sqrt[4]{2}]$. Hence, $[K: \mathbb{Q}[\sqrt[4]{2}]] \geq 2$, and since i is a root of $x^{2}+1$, we must have $[K: \mathbb{Q}[\sqrt[4]{2}]] \leq 2$. So, $[K: \mathbb{Q}[\sqrt[4]{2}]]=2$.
Therefore, $[K: \mathbb{Q}]=2 \cdot 4=8$.
(b) Give a \mathbb{Q}-basis for K [as a vector space over $\mathbb{Q}]$.

Solution. We have that $\{1, \sqrt[4]{2}, \sqrt[4]{4}, \sqrt[4]{8}\}$ is a \mathbb{Q}-basis of $\mathbb{Q}[\sqrt[4]{2}]$. Also, $\{1, \mathrm{i}\}$ is a $\mathbb{Q}[\sqrt[4]{2}]$ basis of K. Hence, a \mathbb{Q}-basis of K is $\{1 \cdot 1,1 \cdot \sqrt[4]{2}, 1 \cdot \sqrt[4]{4}, 1 \cdot \sqrt[4]{8}, \mathrm{i} \cdot 1, \mathrm{i} \cdot \sqrt[4]{2}, \mathrm{i} \cdot \sqrt[4]{4}, \mathrm{i} \cdot \sqrt[4]{8}\}=$ $\{1, \sqrt[4]{2}, \sqrt[4]{4}, \sqrt[4]{8}, \mathrm{i}, \mathrm{i} \cdot \sqrt[4]{2}, \mathrm{i} \cdot \sqrt[4]{4}, \mathrm{i} \cdot \sqrt[4]{8}\}$.
(c) Prove that K / \mathbb{Q} is Galois.

Proof. Since $f \stackrel{\text { def }}{=} x^{4}-2=(x-\sqrt[4]{2})(x-\mathrm{i} \sqrt[4]{2})(x-(-\sqrt[4]{2}))(x-(-\mathrm{i} \sqrt[4]{2}))$, the splitting field of f is $L \stackrel{\text { def }}{=} \mathbb{Q}[\sqrt[4]{2}, \mathrm{i} \sqrt[4]{2}]$. Clearly $L \subseteq K[$ since $\mathrm{i}, \sqrt[4]{2} \in K]$. But since $\sqrt[4]{2}, \mathrm{i} \sqrt[4]{2} \in L$, then $\mathrm{i} \stackrel{\text { def }}{=}(\mathrm{i} \sqrt[4]{2}) / \sqrt[4]{2} \in L$. Hence, $K=L$.
Since K is a splitting field over \mathbb{Q}, we have that K / \mathbb{Q} is Galois.
(d) If $\sigma \in G(K / \mathbb{Q})$, then what are the possible values of $\sigma(\sqrt[4]{2})$ and $\sigma(\mathrm{i})$?

Solution. Since σ fixes \mathbb{Q} and $\sqrt[4]{2}$ and i are roots of $x^{4}-2$ and $x^{2}+1$, respectively, both of which have coefficients in \mathbb{Q}, then σ must take $\sqrt[4]{2}$ to another root of $x^{4}-2$, namely, $\pm \sqrt[4]{2}$ or $\pm \mathrm{i} \sqrt[4]{2}$, and i to another root of $x^{2}+1$, namely $\pm \mathrm{i}$.
8) In this problem we will show that if R is commutative ring with identity, and $a \in R$ is such that $a^{n}=0$ for some positive integer n, then a is in every maximal ideal of R. [Note that if $a \neq 0$, then R is not an integral domain!]
(a) Let I be an ideal and $a \in R$. Prove that

$$
(I, a) \stackrel{\text { def }}{=}\{x+r a: x \in I \text { and } r \in R\}
$$

is an ideal of R that contains I and a.

Proof. 1. Non-empty (and containment): Clearly, $0+1 \cdot a=a \in(I, a)$. Also, for all $x \in I, x=x+0 \cdot a \in(I, a)$. So, $I \subseteq(I, a)$.
2. Additive: Let $x+r a, y+s a \in(I, a)[$ with $x, y \in I$ and $r, s \in R]$. Then $(x+r a)+$ $(y+s a)=(x+y)+(r+s) a$. Since I and R are closed under addition, we have that $(x+y) \in I$ and $(r+s) \in R$. Thus, $(x+r a)+(y+s a) \in(I, a)$.
3. Multiplicative: Let $s \in R$ and $x+r a \in(I, a)$ [with $x \in I$ and $r \in R$]. Then $s(x+r a)=s x+(s r) a$. Since R is closed under multiplication, we have $s r \in R$, and since I is an ideal, and $x \in I, s x \in I$. Thus, $s(x+r a) \in(I, a)$.
(b) Prove that if M is a maximal ideal and $a^{n}=0$ [and you can assume $a^{n-1} \neq 0$] for some positive integer n, with $a \notin M$, then $a^{n-1} \in M$. [Hint: Start by proving that $1_{R} \in(M, a)$, and then use (a).]

Proof. Since $M \subseteq(M, a)[$ from (a)] and $a \in(M, a)$ but $a \notin M$, we have $M \varsubsetneqq(M, a) \subseteq$ R. Since M is a maximal [and (M, a) is an ideal], we have $(M, a)=R$. Therefore, $1 \in(M, a)$. So, there are $x \in M$ and $r \in R$ such that $1=x+r a$. Multiplying by a^{n-1} we have $a^{n-1}=a^{n-1} x+r a^{n}=a^{n-1} x$ [since $\left.a^{n}=0\right]$. Since $x \in M$ [an ideal] and $a^{n-1}=a^{n-1} x \in M$, we have that $a^{n-1} \in M$. [Note that since we might no be in a domain, we cannot cancel the a^{n-1} above!]
(c) Prove that since $a^{n-1} \in M$, we actually have $a \in M$ [which is then a contradiction to the fact that $a \notin M]$.

Proof. Since M is maximal, it is a prime ideal. Since M is prime, and $a^{n-1} \in M$, we have $a \in M$.

