1) Let $\alpha_1 \stackrel{\text{def}}{=} 8 - 8i$, $\alpha_2 \stackrel{\text{def}}{=} 10 + 15i$ and $\beta \stackrel{\text{def}}{=} 2 - 3i$, and let $I \stackrel{\text{def}}{=} (\beta)$ be the principal ideal of $\mathbb{Z}[i]$ generated by β .

(a) Compute the quotient and remainders of the divisions of α_1 and α_2 by β ?

Solution. We divide α_1 by β :

$$\frac{8-8i}{2-3i} = \frac{(8-8i)(2+3i)}{(2-3i)(2+3i)} = \frac{40+8i}{13} = \underbrace{3+i}_{q_1} + \frac{1-5i}{13}.$$

Hence, $\alpha_1 = \beta \cdot q_1 + r_1$, where $r_1 = (8 - 8i) - (2 - 3i)(3 + i) = -1 - i$. So,

$$(8-8i) = (2-3i)\underbrace{(3+i)}_{q_1} + \underbrace{(-1-i)}_{r_1}.$$

[Note $|r_1|^2 = 2 < |2 - 3i|^2 = 13.$] We divide α_2 by β :

$$\frac{10+15i}{2-3i} = \frac{(10+15i)(2+3i)}{(2-3i)(2+3i)} = \frac{-25+60i}{13} = \underbrace{-2+5i}_{q_2} + \underbrace{1-5i}_{13}$$

Hence, $\alpha_2 = \beta \cdot q_2 + r_2$, where $r_2 = (10 + 15i) - (2 - 3i)(-2 + 5i) = -1 - i$. So,

$$(10+15i) = (2-3i)\underbrace{(-2+5i)}_{q_2} + \underbrace{(-1-i)}_{r_2}.$$

[Note $|r_2|^2 = 2 < |2 - 3i|^2 = 13.$]

-	 	_	
н		1	
н		1	

(b) Is $\alpha_1 \equiv \alpha_2 \pmod{I}$?

Solution. Yes. Since $r_1 = r_2 = (-1 - i)$, we have $\alpha_1 - \alpha_2 = ((2 - 3i)(3 + i) + r_1) - ((2 - 3i)(-2 + 5i) + r_2) = (2 - 3i)((3 + i) - (-2 + 5i)) = (2 - 3i)(5 - 4i)$. Hence, $\alpha_1 - \alpha_2 \in I$, i.e., indeed $\alpha_1 \equiv \alpha_2 \pmod{I}$.

	_	

2) Let $\zeta_{11} \stackrel{\text{def}}{=} e^{2\pi i/11}$. Prove that there are exactly four intermediate extension of $\mathbb{Q}[\zeta_{13}]/\mathbb{Q}$ [including \mathbb{Q} and $\mathbb{Q}[\zeta_{13}]$]. [You do **not** have to find them.]

Proof. As seen in class, for all prime p, we have $\mathbb{Q}[\zeta_p]/\mathbb{Q}$ is Galois, with $G(\mathbb{Q}[\zeta_p]/\mathbb{Q}) \cong C_{p-1}$. Hence, since $G \stackrel{\text{def}}{=} G(\mathbb{Q}[\zeta_{11}]/\mathbb{Q}) \cong C_{10}$ is cyclic, it has exactly one subgroup [which is in fact also cyclic] for each divisor of the order, i.e., one subgroup of order 1 [i.e., {id}], one subgroup of order 2, one subgroup of order 5, and one subgroup of order 10 [i.e., G].

By the Main Theorem of Galois Theory [since $Q[\zeta_{11}]/\mathbb{Q}$] is Galois], there is a one-toone correspondence between subgroups of G and intermediate extensions of $\mathbb{Q}[\zeta_{11}]/\mathbb{Q}$. Since there are four subgroups, there are four intermediate fields, with degree equal to the indices: 1 [i.e., $\mathbb{Q}[\zeta_{11}]$], 2, 5, and 10 [i.e, \mathbb{Q}].

3) Let R be a ring [which you can assume is commutative with identity, but it is not necessary] and $a \in R$. Let $\phi : R \to R'$ be a homomorphism such that $a \in \ker \phi$. Prove that the map $\psi : R/(a) \to R'$, defined by $\psi(b + (a)) \stackrel{\text{def}}{=} \phi(b)$ gives a *well-defined* [you *have* to prove that it is well-defined] ring homomorphism.

Proof. 1. Well-defined: Let $b' \in R$ such that b + (a) = b' + (a). Then, we have that there is $ra \in (a)$ [with $r \in R$], such that b' = b + ra. Then

$$\begin{split} \psi(b'+(a)) &= \phi(b') = \phi(b+ra) & [\text{defn. of } \psi] \\ &= \phi(b) + \phi(r)\phi(a) & [\phi \text{ is a homom.}] \\ &= \phi(b) + 0_R = \phi(b) & [a \in \ker \phi] \\ &= \psi(b+(a)) & [\text{defn. of } \psi] \end{split}$$

2. Takes $1_{R/(a)}$ to $1_{R'}$: We have:

$$\psi(1_{R/(a)}) = \psi(1_R + (a))$$

= $\phi(1_R)$ [defn. of ψ]
= $1_{R'}$ [\$\phi\$ is a homom.]

3. Additive: We have:

$$\psi((b+(a)) + (c+(a))) = \psi((b+c) + (a)) \qquad [addition in R/(a)]$$
$$= \phi(b+c) \qquad [defn. of \psi]$$
$$= \phi(b) + \phi(c) \qquad [\phi \text{ is a homom.}]$$
$$= \psi(b+(a)) + \psi(c+(a)) \qquad [defn. of \psi]$$

4. *Multiplicative:* We have:

$$\psi((b + (a)) \cdot (c + (a))) = \psi((bc) + (a)) \qquad [\text{mult. in } R/(a)]$$
$$= \phi(bc) \qquad [\text{defn. of } \psi]$$
$$= \phi(b) \cdot \phi(c) \qquad [\phi \text{ is a homom.}]$$
$$= \psi(b + (a)) \cdot \psi(c + (a)) \qquad [\text{defn. of } \psi]$$

4) Prove that if F is a field and F[[x]] represents formal power series over F [as in the second extra-credit problem], then all non-zero ideals of F[[x]] are of the form (x^n) where n is a non-negative integer. [You can use any fact in the statement of the extra-credit problem.]

Proof. Since F[[x]] is an Euclidean domain [by the extra credit problem], it is a PID. So, if I be a non-zero ideal of F[[x]], there is $a \in F[[x]] - \{0\}$ such that I = (a).

By part (b) of the extra credit problem, we can write $a = x^n a'$ $[n \stackrel{\text{def}}{=} \sigma(a)$ in the extra credit problem] where a' is a unit. Then, a and x^n are associates, and hence $(a) = (x^n)$. \Box

5) Construct a field with 8 elements. [Hint: Extend some known field.]

Solution. Let $f = x^3 + x + 1 \in \mathbb{F}_2[x]$. Then, f(0) = 1, f(1) = 1, and f has no root in \mathbb{F}_2 . Since f has degree 3, this means that f is *irreducible*. Hence, $F \stackrel{\text{def}}{=} \mathbb{F}_2[x]/(x^3 + x + 1)$ is an extension field of \mathbb{F}_2 of degree 3.

Thus, if $\alpha \stackrel{\text{def}}{=} \bar{x} \in F$, we have that $F = \mathbb{F}_2[\alpha]$, with \mathbb{F}_2 -basis $\{1, \alpha, \alpha^2\}$, and hence F has 8 elements: $\{0, 1, \alpha, 1 + \alpha, \alpha^2, 1 + \alpha^2, \alpha + \alpha^2, 1 + \alpha + \alpha^2\}$.

6) Let F be a field of characteristic $p \neq 0$, for which the polynomial $f(x) \stackrel{\text{def}}{=} x^p - x - a \in F[x]$ is irreducible. Let α be a root of f(x) [in some extension of F].

(a) Prove that $\alpha + 1$ is also a root of f(x).

Proof. Since we are in characteristic p, we have that $(a+b)^p = a^p + b^p$. So, $f(\alpha+1) = (\alpha+1)^p - (\alpha+1) - a = \alpha^p + 1 - \alpha - 1 - a = \alpha^p - \alpha - a = f(\alpha) = 0$ [since α is a root of f by hypothesis].

(b) Prove that $F[\alpha]$ is the splitting field of f(x) over F. [Hint: Use (a) to find all roots of f.]

Proof. Repeating the argument above, we have that since $\alpha + 1$ is a root, then $\alpha + 2$ is a root. In this way, we have that α , $\alpha + 1$, ..., $\alpha + (p - 1)$ are roots. [Note that $\alpha + p = \alpha$.] Since these gives us p distinct roots of f, and deg f = p, these are all roots of f. But, $\alpha + i \in F[\alpha]$. So, $F[\alpha]$ is the splitting field.

(c) Prove that $G(F[\alpha]/F) \cong C_p$.

Solution. Since $F[\alpha]$ is a splitting field of f(x) over F, we have that $F[\alpha]/F$ is Galois. Hence, $|G(F[\alpha]/F)| = [F[\alpha] : F]$. But since f is monic and irreducible [by hypothesis] and $f(\alpha) = 0$, we have that $f = \min_{\alpha, F}$, and so $|G(F[\alpha]/F)| = [F[\alpha] : F] = \deg f = p$. Since p is prime, and $G(F[\alpha]/F) \cong C_p$ [every group of prime order is cyclic].

7) Let $K \stackrel{\text{def}}{=} \mathbb{Q}[\sqrt[4]{2}, \mathbf{i}].$

(a) Find $[K : \mathbb{Q}]$.

Solution. We have that $[K : \mathbb{Q}] = [K : \mathbb{Q}[\sqrt[4]{2}] \cdot [\mathbb{Q}[\sqrt[4]{2} : \mathbb{Q}].$ Since $x^4 - 2$ is irreducible [by a Eisenstein's criterion], we have that $[\mathbb{Q}[\sqrt[4]{2} : \mathbb{Q}] = 4.$ Moreover, since $\mathbb{Q}[\sqrt[4]{2}] \subseteq \mathbb{R}$, but $K \nsubseteq \mathbb{R}$, we have $K \neq \mathbb{Q}[\sqrt[4]{2}].$ Hence, $[K : \mathbb{Q}[\sqrt[4]{2}]] \ge 2$, and since i is a root of $x^2 + 1$, we must have $[K : \mathbb{Q}[\sqrt[4]{2}]] \le 2.$ So, $[K : \mathbb{Q}[\sqrt[4]{2}]] = 2.$ Therefore, $[K : \mathbb{Q}] = 2 \cdot 4 = 8.$

(b) Give a \mathbb{Q} -basis for K [as a vector space over \mathbb{Q}].

Solution. We have that $\{1, \sqrt[4]{2}, \sqrt[4]{4}, \sqrt[4]{8}\}$ is a \mathbb{Q} -basis of $\mathbb{Q}[\sqrt[4]{2}]$. Also, $\{1, i\}$ is a $\mathbb{Q}[\sqrt[4]{2}]$ -basis of K. Hence, a \mathbb{Q} -basis of K is $\{1 \cdot 1, 1 \cdot \sqrt[4]{2}, 1 \cdot \sqrt[4]{4}, 1 \cdot \sqrt[4]{8}, i \cdot 1, i \cdot \sqrt[4]{2}, i \cdot \sqrt[4]{4}, i \cdot \sqrt[4]{8}\} = \{1, \sqrt[4]{2}, \sqrt[4]{4}, \sqrt[4]{8}, i, i \cdot \sqrt[4]{2}, i \cdot \sqrt[4]{4}, i \cdot \sqrt[4]{8}\}.$

(c) Prove that K/\mathbb{Q} is Galois.

Proof. Since $f \stackrel{\text{def}}{=} x^4 - 2 = (x - \sqrt[4]{2})(x - i\sqrt[4]{2})(x - (-\sqrt[4]{2}))(x - (-i\sqrt[4]{2}))$, the splitting field of f is $L \stackrel{\text{def}}{=} \mathbb{Q}[\sqrt[4]{2}, i\sqrt[4]{2}]$. Clearly $L \subseteq K$ [since $i, \sqrt[4]{2} \in K$]. But since $\sqrt[4]{2}, i\sqrt[4]{2} \in L$, then $i \stackrel{\text{def}}{=} (i\sqrt[4]{2})/\sqrt[4]{2} \in L$. Hence, K = L.

Since K is a splitting field over \mathbb{Q} , we have that K/\mathbb{Q} is Galois.

(d) If $\sigma \in G(K/\mathbb{Q})$, then what are the possible values of $\sigma(\sqrt[4]{2})$ and $\sigma(i)$?

Solution. Since σ fixes \mathbb{Q} and $\sqrt[4]{2}$ and i are roots of $x^4 - 2$ and $x^2 + 1$, respectively, both of which have coefficients in \mathbb{Q} , then σ must take $\sqrt[4]{2}$ to another root of $x^4 - 2$, namely, $\pm \sqrt[4]{2}$ or $\pm i\sqrt[4]{2}$, and i to another root of $x^2 + 1$, namely $\pm i$.

8) In this problem we will show that if R is commutative ring with identity, and $a \in R$ is such that $a^n = 0$ for some positive integer n, then a is in every maximal ideal of R. [Note that if $a \neq 0$, then R is **not** an integral domain!]

(a) Let I be an ideal and $a \in R$. Prove that

$$(I,a) \stackrel{\text{def}}{=} \{x + ra : x \in I \text{ and } r \in R\}$$

is an ideal of R that contains I and a.

- *Proof.* 1. Non-empty (and containment): Clearly, $0 + 1 \cdot a = a \in (I, a)$. Also, for all $x \in I, x = x + 0 \cdot a \in (I, a)$. So, $I \subseteq (I, a)$.
 - 2. Additive: Let $x + ra, y + sa \in (I, a)$ [with $x, y \in I$ and $r, s \in R$]. Then (x + ra) + (y + sa) = (x + y) + (r + s)a. Since I and R are closed under addition, we have that $(x + y) \in I$ and $(r + s) \in R$. Thus, $(x + ra) + (y + sa) \in (I, a)$.
 - 3. Multiplicative: Let $s \in R$ and $x + ra \in (I, a)$ [with $x \in I$ and $r \in R$]. Then s(x + ra) = sx + (sr)a. Since R is closed under multiplication, we have $sr \in R$, and since I is an ideal, and $x \in I$, $sx \in I$. Thus, $s(x + ra) \in (I, a)$.

(b) Prove that if M is a maximal ideal and aⁿ = 0 [and you can assume aⁿ⁻¹ ≠ 0] for some positive integer n, with a ∉ M, then aⁿ⁻¹ ∈ M. [Hint: Start by proving that 1_R ∈ (M, a), and then use (a).]

Proof. Since $M \subseteq (M, a)$ [from (a)] and $a \in (M, a)$ but $a \notin M$, we have $M \subsetneq (M, a) \subseteq R$. R. Since M is a maximal [and (M, a) is an ideal], we have (M, a) = R. Therefore, $1 \in (M, a)$. So, there are $x \in M$ and $r \in R$ such that 1 = x + ra. Multiplying by a^{n-1} we have $a^{n-1} = a^{n-1}x + ra^n = a^{n-1}x$ [since $a^n = 0$]. Since $x \in M$ [an ideal] and $a^{n-1} = a^{n-1}x \in M$, we have that $a^{n-1} \in M$. [Note that since we might no be in a domain, we cannot cancel the a^{n-1} above!]

(c) Prove that since $a^{n-1} \in M$, we actually have $a \in M$ [which is then a contradiction to the fact that $a \notin M$].

Proof. Since M is maximal, it is a prime ideal. Since M is prime, and $a^{n-1} \in M$, we have $a \in M$.