Math 456

Luís Finotti
Spring 2007

Name:
Student ID (last 5 digits): XXX-X....................

FINAL

Staple to the statements [this document] your solutions in the proper order. [Make sure you are not missing any problem.] They have to be clearly written and organized. Start every new problem in a different sheet.

Check that no pages of the staments [this document] are missing. It has 8 questions and 3 printed pages [including this one], all of which should be turned in with the solutions.

You can use your notes and textbook, but you cannot talk or say anything at all about this exam to anyone. If you do, you will get an \mathbf{F} in this course.

Show all work! Even correct answers without work may result in point deductions. Points will be taken from messy solutions.

You have until $12: 15 \mathrm{pm}$ on $05 / 02$ (Wednesday) to turn in your solutions in my office. I strongly recommend that you plan to turn it in early. [Don't leave it for the last minute!!] If you are late, you will be penalized. [If you foresee any problems, please contact me ASAP.]

Good luck!

Question	Max. Points	Score
1	11	
2	11	
3	11	
4	11	
5	15	
7	15	
8	100	
Total	15	
7	15	
2		

1) Let $\alpha_{1} \stackrel{\text { def }}{=} 8-8 \mathrm{i}, \alpha_{2} \stackrel{\text { def }}{=} 10+15 \mathrm{i}, \beta \stackrel{\text { def }}{=} 2-3 \mathrm{i}$, and let $I \stackrel{\text { def }}{=}(\beta)$ be the principal ideal of $\mathbb{Z}[\mathrm{i}]$ generated by β.
(a) Compute the quotient and remainders of the divisions of α_{1} and α_{2} by β ?
(b) Is $\alpha_{1} \equiv \alpha_{2}(\bmod I)$?
2) Let $\zeta_{11} \stackrel{\text { def }}{=} \mathrm{e}^{2 \pi \mathrm{i} / 11}$. How many intermediate fields does the extension $\mathbb{Q}\left[\zeta_{11}\right] / \mathbb{Q}$ have [including \mathbb{Q} and $\left.\mathbb{Q}\left[\zeta_{11}\right]\right]$? What are their degrees over \mathbb{Q} ? [You do not have to find them, just count them and give their degrees.]
3) Let R be a ring [which you can assume is commutative with identity, but it is not necessary] and $a \in R$. Let $\phi: R \rightarrow R^{\prime}$ be a homomorphism such that $a \in \operatorname{ker} \phi$. Prove that the map $\psi: R /(a) \rightarrow R^{\prime}$, defined by $\psi(b+(a)) \stackrel{\text { def }}{=} \phi(b)$ gives a well-defined [you have to prove that it is well-defined] ring homomorphism.
4) Prove that if F is a field and $F[[x]]$ represents formal power series over F [as in the second extra-credit problem], then all non-zero ideals of $F[[x]]$ are of the form $\left(x^{n}\right)$ where n is a non-negative integer. [Hint: You can use any fact in the statement of the extra-credit problem.]
5) Construct a field with 8 elements. [Hint: Extend some known field.]
6) Let F be a field of characteristic $p \neq 0$, for which the polynomial $f(x) \stackrel{\text { def }}{=} x^{p}-x-a \in F[x]$ is irreducible. Let α be a root of $f(x)$ [in some extension of F].
(a) Prove that $\alpha+1$ is also a root of $f(x)$.
(b) Prove that $F[\alpha]$ is the splitting field of $f(x)$ over F. [Hint: Use (a) to find all roots of f.]
(c) Prove that $G(F[\alpha] / F)$ is cyclic.
7) Let $K \stackrel{\text { def }}{=} \mathbb{Q}[\sqrt[4]{2}, i]$.
(a) Find $[K: \mathbb{Q}]$.
(b) Give a \mathbb{Q}-basis for K [as a vector space over $\mathbb{Q}]$.
(c) Prove that K / \mathbb{Q} is Galois.
(d) If $\sigma \in G(K / \mathbb{Q})$, then what are the possible values of $\sigma(\sqrt[4]{2})$ and $\sigma(\mathrm{i})$?
8) In this problem we will show that if R is commutative ring with identity, and $a \in R$ is such that $a^{n}=0$ for some positive integer n, then a is in every maximal ideal of R. [Note that if $a \neq 0$, then R is not an integral domain!]
(a) Let I be an ideal and $a \in R$. Prove that

$$
(I, a) \stackrel{\text { def }}{=}\{x+r a: x \in I \text { and } r \in R\}
$$

is an ideal of R that contains I and a.
(b) Prove that if M is a maximal ideal and $a^{n}=0$ [and you can assume $a^{n-1} \neq 0$] for some positive integer n, with $a \notin M$ [to later derive a contradiction], then $a^{n-1} \in M$.
[Hint: Start by proving that $1_{R} \in(M, a)$.]
(c) Prove that since $a^{n-1} \in M$, we actually have $a \in M$ [which is then a contradiction to the fact that $a \notin M]$.

