Extra Credit 2

Math 456

May 2, 2007

1. Let F be a field and

$$F[[x]] \stackrel{\text{def}}{=} \left\{ \sum_{n=0}^{\infty} a_n x^n : a_n \in F \right\},$$

i.e., the ring of power series over F. This is indeed an *integral domain*, with the sum and product defined as expected:

$$\left[\sum_{n=0}^{\infty} a_n x^n\right] + \left[\sum_{n=0}^{\infty} b_n x^n\right] \stackrel{\text{def}}{=} \left[\sum_{n=0}^{\infty} (a_n + b_n) x^n\right]$$

and

$$\left[\sum_{n=0}^{\infty} a_n x^n\right] \cdot \left[\sum_{n=0}^{\infty} b_n x^n\right] \stackrel{\text{def}}{=} \left[\sum_{n=0}^{\infty} \left(\sum_{k=0}^n a_k b_{n-k}\right) x^n\right]$$

[You don't have to prove any of the above!!] Let $\sigma : F[[x]] - \{0\} \to \{0, 1, 2, ...\}$ be defined as: $\sigma (\sum_{n=0}^{\infty} a_n x^n)$ is the smallest n such that $a_n \neq 0$.

In this problem we will prove that F[[x]] is a Euclidean domain.

(a) Prove that $F[[x]]^{\times} = \{a \in F[[x]] : \sigma(a) = 0\}.$

Proof. Let $a = \sum_{i=0}^{\infty} a_i x^i \in F[[x]]^{\times}$ and $b = \sum_{i=0}^{\infty} b_i x^i$ such that ab = 1. Comparing coefficients [of the product with the coefficients of 1], we have:

$$\begin{cases} a_0b_0 = 1\\ a_0b_1 + a_1b_0 = 0\\ a_0b_2 + a_1b_1 + a_2b_0 = 0\\ \vdots\\ a_0b_n + a_1b_{n-1} + \dots + a_nb_0 = 0\\ \vdots \end{cases}$$

So, by the first equation, it is clearly necessary that $a_0 \neq 0$.

Moreover, it is also sufficient! To see that, assume that $a_0 \neq 0$. To prove that $a \in F[[x]]^{\times}$, we need to solve the system of equations above where the a_i 's are given and

the b_i 's are the unknowns. We proceed by induction on the number of equations for which we can find a solution.

For the first equation, since $a_0 \neq 0$ [and F is a field], we have that $b_0 = 1/a_0$. Now, assume we can find b_0, \ldots, b_{n-1} solutions for the first n equations. Then, we can find a solution for the (n+1)-th equation, namely [since $a_0 \neq 0$] $b_n = -(a_1b_{n-1}+\cdots+a_nb_0)/a_0$. Therefore, $a \in F[[x]]^{\times}$ if, and only if, $a_0 \neq 0$.

(b) Prove that for all $a \in F[[x]]$, we can write $a = x^{\sigma(a)}a'$, where $a' \in F[[x]]^{\times}$.

Proof. By the definition of $\sigma(a)$, we can always write $a = \sum_{i=\sigma(a)}^{\infty} a_i x^i$. So, factoring the power $x^{\sigma(a)}$ from the summation, we have $a = x^{\sigma(a)} \sum_{i=\sigma(a)}^{\infty} a_i x^{i-\sigma(a)} = x^{\sigma(a)} \sum_{i=0}^{\infty} a_{i+\sigma(a)} x^i$. But, since $a_{\sigma(a)} \neq 0$ [by definition of σ], we clearly have that $\sigma(\sum_{i=0}^{\infty} a_{i+\sigma(a)} x^i) = 0$, and hence it is in $F[[x]]^{\times}$.

(c) Use the above to prove that $a \mid b$ in F[[x]] iff $\sigma(a) \leq \sigma(b)$.

Proof. Note that for all $a, b \in F[[x]]$, we have $\sigma(ab) = \sigma(a) + \sigma(b)$. [This is really easy to check!] So, if b = aq, then $\sigma(b) = \sigma(q) + \sigma(a) \ge \sigma(a)$.

Also, if $\sigma(a) \leq \sigma(b)$, let $a = x^{\sigma(a)}a'$ and $b = x^{\sigma}(b)b'$, with $a', b' \in F[[x]]^{\times}$. Then, since $a' \in F[[x]]^{\times}$, we have b' = qa'. [A unit divides any element!]. So, [since $\sigma(a) \leq \sigma(b)$] we can write:

$$b = x^{\sigma(b)}b'$$

= $x^{\sigma(b)}qa'$
= $x^{\sigma(b)-\sigma(a)}qx^{\sigma(a)}a'$
= $(x^{\sigma(b)-\sigma(a)}q)a$

So, $a \mid b$.

		J

(d) Prove that F[[x]] is a Euclidean domain [with size function σ].

Proof. Let $a, b \in F[[x]]$, with $a \neq 0$. [We need to show that there are $q, r \in F[[x]]$ such that b = qa + r, with r = 0 or $\sigma(r) < \sigma(a)$.] If $\sigma(b) \ge \sigma(a)$, by the previous part, we have that $a \mid b$ [i.e., this is the case when r = 0].

So, suppose $\sigma(b) < \sigma(a)$. Then,

$$b = 0 \cdot a + b,$$

so, since $\sigma(b) < \sigma(a)$, we have the "remainder" as b itself [i.e., r = b and q = 0].