Extra Credit 2

Math 456

May 2, 2007

1. Let F be a field and

$$
F[[x]] \stackrel{\text { def }}{=}\left\{\sum_{n=0}^{\infty} a_{n} x^{n}: a_{n} \in F\right\},
$$

i.e., the ring of power series over F. This is indeed an integral domain, with the sum and product defined as expected:

$$
\left[\sum_{n=0}^{\infty} a_{n} x^{n}\right]+\left[\sum_{n=0}^{\infty} b_{n} x^{n}\right] \stackrel{\text { def }}{=}\left[\sum_{n=0}^{\infty}\left(a_{n}+b_{n}\right) x^{n}\right]
$$

and

$$
\left[\sum_{n=0}^{\infty} a_{n} x^{n}\right] \cdot\left[\sum_{n=0}^{\infty} b_{n} x^{n}\right] \stackrel{\text { def }}{=}\left[\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} a_{k} b_{n-k}\right) x^{n}\right]
$$

[You don't have to prove any of the above!!] Let $\sigma: F[[x]]-\{0\} \rightarrow\{0,1,2, \ldots\}$ be defined as: $\sigma\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)$ is the smallest n such that $a_{n} \neq 0$.

In this problem we will prove that $F[[x]]$ is a Euclidean domain.
(a) Prove that $F[[x]]^{\times}=\{a \in F[[x]]: \sigma(a)=0\}$.

Proof. Let $a=\sum_{i=0}^{\infty} a_{i} x^{i} \in F[[x]]^{\times}$and $b=\sum_{i=0}^{\infty} b_{i} x^{i}$ such that $a b=1$. Comparing coefficients [of the product with the coefficients of 1], we have:

$$
\left\{\begin{array}{l}
a_{0} b_{0}=1 \\
a_{0} b_{1}+a_{1} b_{0}=0 \\
a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0}=0 \\
\vdots \\
a_{0} b_{n}+a_{1} b_{n-1}+\cdots+a_{n} b_{0}=0 \\
\vdots
\end{array}\right.
$$

So, by the first equation, it is clearly necessary that $a_{0} \neq 0$.
Moreover, it is also sufficient! To see that, assume that $a_{0} \neq 0$. To prove that $a \in$ $F[[x]]^{\times}$, we need to solve the system of equations above where the a_{i} 's are given and
the b_{i} 's are the unknowns. We proceed by induction on the number of equations for which we can find a solution.

For the first equation, since $a_{0} \neq 0$ [and F is a field], we have that $b_{0}=1 / a_{0}$. Now, assume we can find b_{0}, \ldots, b_{n-1} solutions for the first n equations. Then, we can find a solution for the $(n+1)$-th equation, namely $\left[\right.$ since $\left.a_{0} \neq 0\right] b_{n}=-\left(a_{1} b_{n-1}+\cdots+a_{n} b_{0}\right) / a_{0}$. Therefore, $a \in F[[x]]^{\times}$if, and only if, $a_{0} \neq 0$.
(b) Prove that for all $a \in F[[x]]$, we can write $a=x^{\sigma(a)} a^{\prime}$, where $a^{\prime} \in F[[x]]^{\times}$.

Proof. By the definition of $\sigma(a)$, we can always write $a=\sum_{i=\sigma(a)}^{\infty} a_{i} x^{i}$. So, factoring the power $x^{\sigma(a)}$ from the summation, we have $a=x^{\sigma(a)} \sum_{i=\sigma(a)}^{\infty} a_{i} x^{i-\sigma(a)}=$ $x^{\sigma(a)} \sum_{i=0}^{\infty} a_{i+\sigma(a)} x^{i}$. But, since $a_{\sigma(a)} \neq 0$ [by defintion of σ], we clearly have that $\sigma\left(\sum_{i=0}^{\infty} a_{i+\sigma(a)} x^{i}\right)=0$, and hence it is in $F[[x]]^{\times}$.
(c) Use the above to prove that $a \mid b$ in $F[[x]]$ iff $\sigma(a) \leq \sigma(b)$.

Proof. Note that for all $a, b \in F[[x]]$, we have $\sigma(a b)=\sigma(a)+\sigma(b)$. [This is really easy to check!] So, if $b=a q$, then $\sigma(b)=\sigma(q)+\sigma(a) \geq \sigma(a)$.
Also, if $\sigma(a) \leq \sigma(b)$, let $a=x^{\sigma(a)} a^{\prime}$ and $b=x^{\sigma}(b) b^{\prime}$, with $a^{\prime}, b^{\prime} \in F[[x]]^{\times}$. Then, since $a^{\prime} \in F[[x]]^{\times}$, we have $b^{\prime}=q a^{\prime}$. [A unit divides any element!]. So, [since $\sigma(a) \leq \sigma(b)$] we can write:

$$
\begin{aligned}
b & =x^{\sigma(b)} b^{\prime} \\
& =x^{\sigma(b)} q a^{\prime} \\
& =x^{\sigma(b)-\sigma(a)} q x^{\sigma(a)} a^{\prime} \\
& =\left(x^{\sigma(b)-\sigma(a)} q\right) a
\end{aligned}
$$

So, $a \mid b$.
(d) Prove that $F[[x]]$ is a Euclidean domain [with size function $\sigma]$.

Proof. Let $a, b \in F[[x]]$, with $a \neq 0$. [We need to show that there are $q, r \in F[[x]]$ such that $b=q a+r$, with $r=0$ or $\sigma(r)<\sigma(a)$.] If $\sigma(b) \geq \sigma(a)$, by the previous part, we have that $a \mid b$ [i.e., this is the case when $r=0$].
So, suppose $\sigma(b)<\sigma(a)$. Then,

$$
b=0 \cdot a+b,
$$

so, since $\sigma(b)<\sigma(a)$, we have the "remainder" as b itself [i.e., $r=b$ and $q=0$].

