Extra Credit 2

Math 456

April 4, 2007

1. Let F be a field and

$$
F[[x]] \stackrel{\text { def }}{=}\left\{\sum_{n=0}^{\infty} a_{n} x^{n}: a_{n} \in F\right\}
$$

i.e., the ring of power series over F. This is indeed an integral domain, with the sum and product defined as expected:

$$
\left[\sum_{n=0}^{\infty} a_{n} x^{n}\right]+\left[\sum_{n=0}^{\infty} b_{n} x^{n}\right] \stackrel{\text { def }}{=}\left[\sum_{n=0}^{\infty}\left(a_{n}+b_{n}\right) x^{n}\right]
$$

and

$$
\left[\sum_{n=0}^{\infty} a_{n} x^{n}\right] \cdot\left[\sum_{n=0}^{\infty} b_{n} x^{n}\right] \stackrel{\text { def }}{=}\left[\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} a_{k} b_{n-k}\right) x^{n}\right]
$$

[You don't have to prove any of the above!!] Let $\sigma: F[[x]]-\{0\} \rightarrow\{0,1,2, \ldots\}$ be defined as: $\sigma\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)$ is the smallest n such that $a_{n} \neq 0$.

In this problem we will prove that $F[[x]]$ is a Euclidean domain.
(a) Prove that $F[[x]]^{\times}=\{a \in F[[x]]: \sigma(a)=0\}$.
(b) Prove that for all $a \in F[[x]]$, we can write $a=x^{\sigma(a)} a^{\prime}$, where $a^{\prime} \in F[[x]]^{\times}$.
(c) Use the above to prove that $a \mid b$ in $F[[x]]$ iff $\sigma(a) \leq \sigma(b)$.
(d) Prove that $F[[x]]$ is a Euclidean domain [with size function $\sigma]$.

