Extra Credit 1

Math 456

February 19, 2007

Be careful in Problem 1(a) in the Midterm I:

1. Let R be a ring and I be an ideal of R.
(a) Prove that if J is an ideal of R containing I, then $\bar{J} \stackrel{\text { def }}{=}\{\bar{a} \in R / I: a \in J\}$ is an ideal of R / I.
(b) Prove that if \bar{J}^{\prime} is an ideal of R / I, then $J^{\prime} \stackrel{\text { def }}{=}\left\{a \in R: \bar{a} \in \bar{J}^{\prime}\right\}$ is an ideal of R containing I.

If, in your solution you say: "Let $\bar{a} \in \bar{J}$. Then, by defintion of \bar{J}, we have that $a \in J$.", you will need to justify it (or say something else)!!! It does not follow from the definition! (Why not?)

In fact, for extra credit, give an example where I and J are ideals of a commutative ring R with unity, in which there is an $\bar{a} \in \bar{J} \stackrel{\text { def }}{=}\{\bar{a} \in R / I: a \in J\}$, with $a \notin J$.

Solution. Note first that in the case of the exam, one can get around the problem by saying someting like: "Let $\bar{a} \in \bar{J}$. Then, there exists $b \in J$ such that $\bar{b}=\bar{a}$ in \bar{J}." And then use, \bar{b} instead of \bar{a}.

On the other hand, since $I \subseteq J$, we have that a indeed has to be in J, since [as you can see in the solution of the exam], if $\bar{b}=\bar{a}$, then $a-b \in I \subseteq J$. Since $b \in J$ and J is closed under addition, $a \in J$.

Now, for the extra credit: Let $R=\mathbb{Z}, I=(3)$ and $J=(5)$. Then, $\bar{J}=\mathbb{Z} /(3)$, since, in $\mathbb{Z} / 3 \mathbb{Z}$, we have $\overline{5}=\overline{2}, \overline{10}=\overline{1}$ and $\overline{15}=\overline{0}$. But then $\overline{2} \in \bar{J}$, but $2 \notin J=5 \mathbb{Z}$.

