
1) Prove that if f ∈ Z[x] is primitive and g ∈ Z[x] divides f in Z[x], then either g or −g is
also primitive.

Proof. Let f = g · q, where q ∈ Q[x]. Write, g = c · g0, q = d · q0, where c, d ∈ Q and g0, q0

are primitive. [So, c and d are the content of g and q respectively.] Since, g, q ∈ Z[x], we
have that c, d ∈ Z.

By Gauss’s Lemma, g0 · q0 is primitive, and then, since f = g · q = (cd) · (g0 · q0), by the
unique representation of a polynomial with rational coefficients as a rational number times
a primitive polynomial, and since f is primitive, we have that cd = 1. So, since c, d ∈ Z,
we have that c = ±1 [and d = c]. Hence g = g0, and g is primitive, or g = −g0, and −g is
primitive.
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2) Find whether or not the following polynomials are irreducible over Q[x].

(a) f1(x) = x4 + x3 + x− 6

Solution. Look for rational roots. The possibilities are ±1,±2,±3,±6. We have that
f1(−2) = 0. Hence (x + 2) divides f1, and so f1 is not irreducible.

(b) f2(x) = x6 − 2x5 + 14x2 − 8x + 34

Solution. Applying the Eisenstein’s Criterion with p = 2, we see that f2 is irreducible.

(c) f3(x) = 100x3 − x + 2008

Solution. Reducing modulo 3, we get f̄3(x) = x3+2̄x+2̄. If this polynomial is reducible
in F3[x], it must have a root. But f̄3(0̄) = f̄3(1̄) = f̄3(2̄) = 2̄. Hence it has no roots
and f̄3 is irreducible in F3[x]. Therefore f3 is irreducible in Q[x].

(d) f4(x) = x4 + x3 + x2 + x + 1

Solution. This is φ5, the cyclotomic polynomial for the prime 5. Hence, it is irreducible.
[You can prove it by applying the Eisenstein’s Criterion to f4(x + 1) with p = 5.]
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3) Let F be a field. We say that α ∈ F is a multiple root of f(x) ∈ F [x] if f(x) =
(x− α)2 · g(x), for some g ∈ F [x].

(a) Prove that if α is a multiple root of f , then f(α) = f ′(α) = 0, where f ′(x) is the
derivative of f(x) [as in calculus]. [Note that all calculus formulas for derivatives hold
for polynomials.]

Proof. Since α is a multiple root of f , write f(x) = (x− α)2g(x). We then have:

f ′(x) =
d

dx
(x− α)2g(x) = 2(x− α)g(x) + (x− α)2g′(x).

Hence f ′(α) = 2(α− α)g(α) + (α− α)2g(α) = 0.

(b) Prove that if f(x) ∈ F [x] is irreducible, then f(x) has no multiple roots in any extension
of F , as long as f ′(x) 6= 0. [Hint: What’s the greatest common divisor of f(x) and
f ′(x)?]

Proof. Since f(x) is irreducible, we have that if g(x) divides f(x), then g is a [non-zero]
constant or it is associated to f .

Let then g be a common divisor of f and f ′. If g is an associate of f , it has the same
degree as f , and so g cannot divide f ′, since deg f ′ < deg f = deg g and f ′(x) 6= 0. [If
we have that f ′ = g · q, then deg f ′ = deg g + deg q. So, if f ′ 6= 0, then deg g ≤ deg f ′,
which is a contradiction. But notice that if f ′ = 0, then f ′ = 0 · g, and so g | f ′.]

So, since g cannot be an associate of f , it has to be a constant [i.e., a unit] and
gcd(f, f ′) = 1.

So, by Bezout’s Theorem, there are r, s ∈ F [x] such that

r(x)f(x) + s(x)f ′(x) = 1.

If α is a multiple root of f(x), by (a) it is also a root of f ′(x). Then, plugging x = α
in the equation above would give us 0 = 1, a contradiction. Hence, f has no multiple
roots.

[Note: Let f
def
= x2 + t2 ∈ F2(t

2)[x]. Then, f has no roots in F2(t
2), since f = (x + t)2

[we are in characteristic 2], and so the only root is t 6∈ F2(t
2). Since f has degree 2

and no roots in F2(t
2), it is irreducible in F2(t

2)[x].

But, in the extension F2(t), f does have multiple roots, namely, t is a double root.
But, as you can expect from the statement, we have f ′ = 2x = 0.]
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4) Let R be a UFD and let P be a non-zero prime ideal of R such that if P ′ is another prime
ideal, with (0) $ P ′ ⊆ P , then P ′ = P . Prove that P is principal.

Proof. Since P 6= (0), there is a ∈ P , with a 6= 0. If a is a unit, then P = R, and P would not
be prime. [R = (1) is not prime by definition.] Since R is a UFD, we can write a = p1 · · · pk,
where the pi are primes [and irreducible]. Since P is a prime ideal, and a = p1 · · · pk ∈ P ,
we have pi ∈ P for some i ∈ {1, . . . , k}.

So, (0) $ (pi) ⊆ P . Since pi is prime, the ideal (pi) is also prime. [We have seen that in
class, but it is easy to see: ab ∈ (pi) iff pi | ab iff pi | a or pi | b [definition of prime element]
iff a ∈ (pi) or b ∈ (pi).]

Hence, by hypothesis, (pi) = P , and P is principal.
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5) Maximal ideals of polynomial rings with complex coefficients.

(a) Prove that if I is an ideal of C[x, y] and M is a maximal ideal containing I, then there
is a point (a, b) such that for all f(x, y) ∈ I, we have f(a, b) = 0.

[Observation: This statement is also true for n variables (with an analogous solu-
tion).]

Proof. By the Nullstellensatz, M = (x− a, y − b) for some a, b ∈ C. Since I ⊆ M , for
all f ∈ I, there are f1, f2 ∈ C[x, y] such that

f(x, y) = (x− a)f1(x, y) + (y − b)f2(x, y).

But then, f(a, b) = 0.

(b) Let I = (3x − y − 2, y − x2) be an ideal of C[x, y]. Find all maximal ideals of C[x, y]
that contain I.

Solution. By (a), if I ⊆ M = (x − a, y − b), then every polynomial in I must vanish
at (a, b), in particular, (a, b) must be a common zero of 3x− y − 2 and y − x2. So, we
just need to solve the system: {

3x− y − 2 = 0
y − x2 = 0

Solving we find only two points: (1, 1) and (2, 4).

So, there are only two possible maximal ideals that might contain I: (x− 1, y− 1) and
(x− 2, y − 4). Now, if f(x, y) ∈ I, we have that

f(x, y) = (3x− y − 2)f1(x, y) + (y − x2)f2(x, y),

and thus f(1, 1) = f(2, 4) = 0. Hence, indeed I is indeed contained in those maximal
ideals. [Remember that f(x, y) ∈ (x − x0, y − y0) iff f(x0, y0) = 0. We used Taylor
expansions around (x0, y0) to prove that.]
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