1) Prove that if $f \in \mathbb{Z}[x]$ is primitive and $g \in \mathbb{Z}[x]$ divides f in $\mathbb{Z}[x]$, then either g or $-g$ is also primitive.

Proof. Let $f=g \cdot q$, where $q \in \mathbb{Q}[x]$. Write, $g=c \cdot g_{0}, q=d \cdot q_{0}$, where $c, d \in \mathbb{Q}$ and g_{0}, q_{0} are primitive. [So, c and d are the content of g and q respectively.] Since, $g, q \in \mathbb{Z}[x]$, we have that $c, d \in \mathbb{Z}$.

By Gauss's Lemma, $g_{0} \cdot q_{0}$ is primitive, and then, since $f=g \cdot q=(c d) \cdot\left(g_{0} \cdot q_{0}\right)$, by the unique representation of a polynomial with rational coefficients as a rational number times a primitive polynomial, and since f is primitive, we have that $c d=1$. So, since $c, d \in \mathbb{Z}$, we have that $c= \pm 1$ [and $d=c$]. Hence $g=g_{0}$, and g is primitive, or $g=-g_{0}$, and $-g$ is primitive.
2) Find whether or not the following polynomials are irreducible over $\mathbb{Q}[x]$.
(a) $f_{1}(x)=x^{4}+x^{3}+x-6$

Solution. Look for rational roots. The possibilities are $\pm 1, \pm 2, \pm 3, \pm 6$. We have that $f_{1}(-2)=0$. Hence $(x+2)$ divides f_{1}, and so f_{1} is not irreducible.
(b) $f_{2}(x)=x^{6}-2 x^{5}+14 x^{2}-8 x+34$

Solution. Applying the Eisenstein's Criterion with $p=2$, we see that f_{2} is irreducible.
(c) $f_{3}(x)=100 x^{3}-x+2008$

Solution. Reducing modulo 3 , we get $\bar{f}_{3}(x)=x^{3}+\overline{2} x+\overline{2}$. If this polynomial is reducible in $\mathbb{F}_{3}[x]$, it must have a root. But $\bar{f}_{3}(\overline{0})=\bar{f}_{3}(\overline{1})=\bar{f}_{3}(\overline{2})=\overline{2}$. Hence it has no roots and \bar{f}_{3} is irreducible in $\mathbb{F}_{3}[x]$. Therefore f_{3} is irreducible in $\mathbb{Q}[x]$.
(d) $f_{4}(x)=x^{4}+x^{3}+x^{2}+x+1$

Solution. This is ϕ_{5}, the cyclotomic polynomial for the prime 5. Hence, it is irreducible. [You can prove it by applying the Eisenstein's Criterion to $f_{4}(x+1)$ with $p=5$.]
3) Let F be a field. We say that $\alpha \in F$ is a multiple root of $f(x) \in F[x]$ if $f(x)=$ $(x-\alpha)^{2} \cdot g(x)$, for some $g \in F[x]$.
(a) Prove that if α is a multiple root of f, then $f(\alpha)=f^{\prime}(\alpha)=0$, where $f^{\prime}(x)$ is the derivative of $f(x)$ [as in calculus]. [Note that all calculus formulas for derivatives hold for polynomials.]

Proof. Since α is a multiple root of f, write $f(x)=(x-\alpha)^{2} g(x)$. We then have:

$$
f^{\prime}(x)=\frac{\mathrm{d}}{\mathrm{~d} x}(x-\alpha)^{2} g(x)=2(x-\alpha) g(x)+(x-\alpha)^{2} g^{\prime}(x) .
$$

Hence $f^{\prime}(\alpha)=2(\alpha-\alpha) g(\alpha)+(\alpha-\alpha)^{2} g(\alpha)=0$.
(b) Prove that if $f(x) \in F[x]$ is irreducible, then $f(x)$ has no multiple roots in any extension of F, as long as $f^{\prime}(x) \neq 0$. [Hint: What's the greatest common divisor of $f(x)$ and $f^{\prime}(x)$?]

Proof. Since $f(x)$ is irreducible, we have that if $g(x)$ divides $f(x)$, then g is a [non-zero] constant or it is associated to f.
Let then g be a common divisor of f and f^{\prime}. If g is an associate of f, it has the same degree as f, and so g cannot divide f^{\prime}, since $\operatorname{deg} f^{\prime}<\operatorname{deg} f=\operatorname{deg} g$ and $f^{\prime}(x) \neq 0$. [If we have that $f^{\prime}=g \cdot q$, then $\operatorname{deg} f^{\prime}=\operatorname{deg} g+\operatorname{deg} q$. So, if $f^{\prime} \neq 0$, then $\operatorname{deg} g \leq \operatorname{deg} f^{\prime}$, which is a contradiction. But notice that if $f^{\prime}=0$, then $f^{\prime}=0 \cdot g$, and so $g \mid f^{\prime}$.]
So, since g cannot be an associate of f, it has to be a constant [i.e., a unit] and $\operatorname{gcd}\left(f, f^{\prime}\right)=1$.
So, by Bezout's Theorem, there are $r, s \in F[x]$ such that

$$
r(x) f(x)+s(x) f^{\prime}(x)=1
$$

If α is a multiple root of $f(x)$, by (a) it is also a root of $f^{\prime}(x)$. Then, plugging $x=\alpha$ in the equation above would give us $0=1$, a contradiction. Hence, f has no multiple roots.
[Note: Let $f \stackrel{\text { def }}{=} x^{2}+t^{2} \in \mathbb{F}_{2}\left(t^{2}\right)[x]$. Then, f has no roots in $\mathbb{F}_{2}\left(t^{2}\right)$, since $f=(x+t)^{2}$ [we are in characteristic 2], and so the only root is $t \notin \mathbb{F}_{2}\left(t^{2}\right)$. Since f has degree 2 and no roots in $\mathbb{F}_{2}\left(t^{2}\right)$, it is irreducible in $\mathbb{F}_{2}\left(t^{2}\right)[x]$.
But, in the extension $\mathbb{F}_{2}(t), f$ does have multiple roots, namely, t is a double root. But, as you can expect from the statement, we have $f^{\prime}=2 x=0$.]
4) Let R be a UFD and let P be a non-zero prime ideal of R such that if P^{\prime} is another prime ideal, with $(0) \varsubsetneqq P^{\prime} \subseteq P$, then $P^{\prime}=P$. Prove that P is principal.

Proof. Since $P \neq(0)$, there is $a \in P$, with $a \neq 0$. If a is a unit, then $P=R$, and P would not be prime. [$R=(1)$ is not prime by definition.] Since R is a UFD, we can write $a=p_{1} \cdots p_{k}$, where the p_{i} are primes [and irreducible]. Since P is a prime ideal, and $a=p_{1} \cdots p_{k} \in P$, we have $p_{i} \in P$ for some $i \in\{1, \ldots, k\}$.

So, $(0) \varsubsetneqq\left(p_{i}\right) \subseteq P$. Since p_{i} is prime, the ideal $\left(p_{i}\right)$ is also prime. [We have seen that in class, but it is easy to see: $a b \in\left(p_{i}\right)$ iff $p_{i} \mid a b$ iff $p_{i} \mid a$ or $p_{i} \mid b$ [definition of prime element] iff $a \in\left(p_{i}\right)$ or $b \in\left(p_{i}\right)$.]

Hence, by hypothesis, $\left(p_{i}\right)=P$, and P is principal.
5) Maximal ideals of polynomial rings with complex coefficients.
(a) Prove that if I is an ideal of $\mathbb{C}[x, y]$ and M is a maximal ideal containing I, then there is a point (a, b) such that for all $f(x, y) \in I$, we have $f(a, b)=0$.
[Observation: This statement is also true for n variables (with an analogous solution).]

Proof. By the Nullstellensatz, $M=(x-a, y-b)$ for some $a, b \in \mathbb{C}$. Since $I \subseteq M$, for all $f \in I$, there are $f_{1}, f_{2} \in \mathbb{C}[x, y]$ such that

$$
f(x, y)=(x-a) f_{1}(x, y)+(y-b) f_{2}(x, y) .
$$

But then, $f(a, b)=0$.
(b) Let $I=\left(3 x-y-2, y-x^{2}\right)$ be an ideal of $\mathbb{C}[x, y]$. Find all maximal ideals of $\mathbb{C}[x, y]$ that contain I.

Solution. By (a), if $I \subseteq M=(x-a, y-b)$, then every polynomial in I must vanish at (a, b), in particular, (a, b) must be a common zero of $3 x-y-2$ and $y-x^{2}$. So, we just need to solve the system:

$$
\left\{\begin{array}{r}
3 x-y-2=0 \\
y-x^{2}=0
\end{array}\right.
$$

Solving we find only two points: $(1,1)$ and $(2,4)$.
So, there are only two possible maximal ideals that might contain $I:(x-1, y-1)$ and $(x-2, y-4)$. Now, if $f(x, y) \in I$, we have that

$$
f(x, y)=(3 x-y-2) f_{1}(x, y)+\left(y-x^{2}\right) f_{2}(x, y)
$$

and thus $f(1,1)=f(2,4)=0$. Hence, indeed I is indeed contained in those maximal ideals. [Remember that $f(x, y) \in\left(x-x_{0}, y-y_{0}\right)$ iff $f\left(x_{0}, y_{0}\right)=0$. We used Taylor expansions around $\left(x_{0}, y_{0}\right)$ to prove that.]

