Math 456 - Midterm I

1) Let R be a ring and I be an ideal of R.
(a) Prove that if J is an ideal of R containing I, then $\bar{J} \stackrel{\text { def }}{=}\{\bar{a} \in R / I: a \in J\}$ is an ideal of R / I.

Solution. First observe that if $\bar{a} \in \bar{J}$, then, there is some $b \in J$ such that $\bar{b}=\bar{a}$, i.e., $a-b \in I \subseteq J$. But then, since J is closed under addition and $b \in J$, this means that $a \in J$. Therefore, if $\bar{a} \in \bar{J}$, then $a \in J$.
Since $J \neq \varnothing$, clearly $\bar{J} \neq \varnothing$.
Let $\bar{a}, \bar{b} \in \bar{J}$. Then $a, b \in J$ and so $a+b \in J$, and hence $\bar{a}+\bar{b}=\overline{a+b} \in \bar{J}$ [by definition of $\bar{J}]$.
In the same way, if $\bar{a} \in \bar{J}$ and $\bar{r} \in \bar{R}$, then $r \in R$ and $a \in J$. Since J is an ideal, we have that $r \cdot a \in J$. Thus, $\bar{r} \cdot \bar{a}=\bar{r} \cdot a \in \bar{J}$.
(b) Prove that if \bar{J}^{\prime} is an ideal of R / I, then $J^{\prime} \stackrel{\text { def }}{=}\left\{a \in R: \bar{a} \in \bar{J}^{\prime}\right\}$ is an ideal of R containing I.

Solution. Since $\bar{J}^{\prime} \neq \varnothing$, clearly $J^{\prime} \neq \varnothing$.
Let $a, b \in J^{\prime}$. Then, $\bar{a}, \bar{b} \in \bar{J}^{\prime}$ [by definition]. Since \bar{J}^{\prime} is an ideal, $\bar{a}+\bar{b}=\overline{a+b} \in \bar{J}^{\prime}$. So, $a+b \in J^{\prime}$ [by defintion of J^{\prime} again].
In the same way, let $r \in R$ and $a \in J$, then $\bar{r} \in \bar{R}$ and $\bar{a} \in \bar{J}^{\prime}$, and hence $\bar{r} \cdot \bar{a}=\overline{r \cdot a} \in \bar{J}^{\prime}$. Thus, $r \cdot a \in J^{\prime}$.
2) Let R be a commutative ring with identity and $a \in R$ such that $a^{n-1} \neq 0$, but $a^{n}=0$, for some positive integer n. Prove that $R[x] /(a x-1)=\{\overline{0}\}$, i.e., it is the zero ring.

Solution. It suffices to show that $1 \in(a x-1)$. But, since $a^{n}=0$

$$
1=\left(1-a^{n} x^{n}\right)=(1-a x)\left(1+a x+a^{2} x^{2}+\cdots+a^{n-1} x^{n-1}\right) .
$$

Since $1 \in(a x-1)$, we have that $(a x-1)=(1)=R[x]$, and the quotient is then the zero ring.

A more direct way to see this, is to see that we are adjoining an inverse of a to R, say α : $a \cdot \alpha=1$ in $R^{\prime} \stackrel{\text { def }}{=} R[x] /(a x-1)=R[\alpha]$. Then, for all b in R^{\prime}, we have that $a^{n} b=0$, since $a^{n}=0$. But then, $\alpha^{n} a^{n} b=(\alpha a)^{n}=1_{R^{\prime}} b=b=0$. So, every element of R^{\prime} is equal to zero.
3) Let R be an integral domain, F be its field of fractions [or quotient field], and K be field such that $R \subseteq K$. Prove that there is an injective homomorphism $\phi: F \rightarrow K$, such that for all $a \in R, \phi\left(\frac{a}{1}\right)=a$. [Hint: To start, you need to find the formula for ϕ. Think of the most natural way of seeing an element of F inside of K, remembering that the image is contained in a field. Also, you will have to show that your formula is well defined, i.e., if $\frac{a}{b}=\frac{c}{d}$, then $\left.\phi\left(\frac{a}{b}\right)=\phi\left(\frac{c}{d}\right).\right]$

Solution. Let $\phi: R \rightarrow K$ defined by $\phi(a / b) \stackrel{\text { def }}{=} a \cdot b^{-1}$. [Note that since K is a field, and $b \in R-\{0\} \subseteq K-\{0\}$, we have $b^{-1} \in K$.]

Well defined: Suppose that $a / b=c / d$, i.e., $a d=b c$. Then, since $d \neq 0$, we have $a=b c d^{-1}$ [in $K]$. So, $\phi(a / b)=a b^{-1}=b c d^{-1} b^{-1}=c d^{-1}=\phi(c / d)$. Hence, ϕ is well defined.

Homomorphism: We have:

$$
\begin{aligned}
\phi\left(1_{F}\right) & =\phi(1 / 1)=1 \cdot 1^{-1}=1, \\
\phi(a / b+c / d) & =\phi((a d+b c) / b d)=(a d+b c)(b d)^{-1}=(a d+b c)\left(b^{-1} d^{-1}\right) \\
& =a b^{-1}+c d^{-1}=\phi(a / b)+\phi(c / d) \\
\phi(a / b \cdot c / d) & =\phi((a c) /(b d))=(a c)(b d)^{-1}=a c b^{-1} d^{-1} \\
& =a b^{-1} c d^{-1}=\phi(a / b) \cdot \phi(c / d) .
\end{aligned}
$$

Injective: If $\phi(a / b)=0$, then $a b^{-1}=0$. Since we are in a field [and so a domain], there is no zero divisor, and so either $a=0$ or $b^{-1}=0$. Since $b \neq 0$, we have that $b^{-1} \neq 0$ [it is invertible], so $a=0$. Then, $a / b=0 / b=0_{F}$. Hence ϕ is injective

Now, by its definition, clearly $\phi(a / 1)=a \cdot 1^{-1}=a$.
4) Prove that $\mathbb{Z}[i \sqrt{3}] /(2-i \sqrt{3}) \cong \mathbb{Z} / 7 \mathbb{Z}$.

Solution. [Here are a few preliminary comments: first, the ring $\mathbb{Z}[\mathrm{i} \sqrt{3}]$ is very much like the Gaussian Integers $\mathbb{Z}[\mathrm{i}]$. Note that $\mathbb{Z}[\mathrm{i} \sqrt{3}] \cong \mathbb{Z}[x] /\left(x^{2}+3\right)$, and hence $\{1, \mathrm{i} \sqrt{3}\}$ is a basis, i.e., every element in this ring can be represented in a unique way as $a+b \mathrm{i} \sqrt{3}$.]

Let $\phi: \mathbb{Z} \rightarrow \mathbb{Z}[\mathrm{i} \sqrt{3}] /(2-\mathrm{i} \sqrt{3})$ be the unique homormophism, i.e., $\phi(n)=n \cdot \overline{1}=\bar{n}=$ $n+(2-\mathrm{i} \sqrt{3})$. [Note, we do not need to prove that the map " $n \mapsto n \cdot 1_{R}$ " is a homomorphism! It is always a homomorphism.]

We have that

$$
\phi(7)=\overline{7}=\overline{(2-\mathrm{i} \sqrt{3}) \cdot(2+\mathrm{i} \sqrt{3})}=\overline{(2-\mathrm{i} \sqrt{3})} \cdot \overline{(2+\mathrm{i} \sqrt{3})}=\overline{0} \cdot \overline{(2+\mathrm{i} \sqrt{3})}=\overline{0}
$$

Hence, (7) $\subseteq \operatorname{ker} \phi$.
Now, let $n \in \operatorname{ker} \phi$. Then, $\phi(n)=\bar{n}=\overline{0}$, i.e., $n \in(2-\mathrm{i} \sqrt{3})$, or $n=(a+b \mathrm{i} \sqrt{3})(2-\mathrm{i} \sqrt{3})$. So, $n=(2 a+3 b)+(2 b-a) \mathrm{i} \sqrt{3}$. Thus, $a=2 b$ [for the imaginary to be zero - we are using the unique representation here!!], which yields $n=7 b$, and therefore ker $\phi \subseteq(7)$.

We can then conclude that $\operatorname{ker} \phi=(7)$.
Let $R \stackrel{\text { def }}{=} \mathbb{Z}[\mathrm{i} \sqrt{3}] /(2-\mathrm{i} \sqrt{3})$. Then, in $R, \overline{2-\mathrm{i} \sqrt{3}}=\overline{0}$, i.e., $\overline{\mathrm{i} \sqrt{3}}=\overline{2}$. So, given $\overline{a+b \mathrm{i} \sqrt{3}} \in$ R [and so $a, b \in \mathbb{Z}$], we have that $\phi(a+2 b)=\overline{a+2 b}=\overline{a+b \mathrm{i} \sqrt{3}}$, and ϕ is onto.

By the First Isomorphism Theorem, $\mathbb{Z} /(7) \cong \mathbb{Z}[\mathrm{i} \sqrt{3}] /(2-\mathrm{i} \sqrt{3})$.

