Extra Credit 1
Math 456
February 19, 2007

Be careful in Problem 1(a) in the Midterm I:

1. Let R be a ring and I be an ideal of R.

(a) Prove that if J is an ideal of R containing I, then $\bar{J} \overset{\text{def}}{=} \{ \bar{a} \in R/I : a \in J \}$ is an ideal of R/I.

(b) Prove that if J' is an ideal of R/I, then $J' \overset{\text{def}}{=} \{ a \in R : \bar{a} \in \bar{J}' \}$ is an ideal of R containing I.

If, in your solution you say: “Let $\bar{a} \in \bar{J}$. Then, by definition of \bar{J}, we have that $a \in J.$”, you will need to justify it (or say something else)!!! It does not follow from the definition! (Why not?)

In fact, for extra credit, give an example where I and J are ideals of a commutative ring R with unity, in which there is an $\bar{a} \in \bar{J} \overset{\text{def}}{=} \{ \bar{a} \in R/I : a \in J \}$, with $a \not\in J$.

Solution. Note first that in the case of the exam, one can get around the problem by saying something like: “Let $\bar{a} \in \bar{J}$. Then, there exists $b \in J$ such that $\bar{b} = \bar{a}$ in \bar{J}.” And then use, \bar{b} instead of \bar{a}.

On the other hand, since $I \subseteq J$, we have that a indeed has to be in J, since [as you can see in the solution of the exam], if $\bar{b} = \bar{a}$, then $a - b \in I \subseteq J$. Since $b \in J$ and J is closed under addition, $a \in J$.

Now, for the extra credit: Let $R = \mathbb{Z}$, $I = (3)$ and $J = (5)$. Then, $\bar{J} = \mathbb{Z}/(3)$, since, in $\mathbb{Z}/3\mathbb{Z}$, we have $\bar{5} = \bar{2}$, $\bar{10} = \bar{1}$ and $\bar{15} = \bar{0}$. But then $\bar{2} \in \bar{J}$, but $2 \not\in J = 5\mathbb{Z}$.