1) Prove that if \(f \in \mathbb{Z}[x] \) is primitive and \(g \in \mathbb{Z}[x] \) divides \(f \) in \(\mathbb{Z}[x] \), then either \(g \) or \(-g \) is also primitive.

Proof. Let \(f = g \cdot q \), where \(q \in \mathbb{Q}[x] \). Write, \(g = c \cdot g_0, \ q = d \cdot q_0 \), where \(c, d \in \mathbb{Q} \) and \(g_0, q_0 \) are primitive. [So, \(c \) and \(d \) are the content of \(g \) and \(q \) respectively.] Since, \(g, q \in \mathbb{Z}[x] \), we have that \(c, d \in \mathbb{Z} \).

By Gauss’s Lemma, \(g_0 \cdot q_0 \) is primitive, and then, since \(f = g \cdot q = (cd) \cdot (g_0 \cdot q_0) \), by the unique representation of a polynomial with rational coefficients as a rational number times a primitive polynomial, and since \(f \) is primitive, we have that \(cd = 1 \). So, since \(c, d \in \mathbb{Z} \), we have that \(c = \pm 1 \) [and \(d = c \)]. Hence \(g = g_0 \), and \(g \) is primitive, or \(g = -g_0 \), and \(-g \) is primitive.

\(\square \)
2) Find whether or not the following polynomials are irreducible over \(\mathbb{Q}[x] \).

(a) \(f_1(x) = x^4 + x^3 + x - 6 \)

\textit{Solution.} Look for rational roots. The possibilities are \(\pm 1, \pm 2, \pm 3, \pm 6 \). We have that \(f_1(-2) = 0 \). Hence \((x + 2) \) divides \(f_1 \), and so \(f_1 \) is \textit{not} irreducible.

(b) \(f_2(x) = x^6 - 2x^5 + 14x^2 - 8x + 34 \)

\textit{Solution.} Applying the Eisenstein’s Criterion with \(p = 2 \), we see that \(f_2 \) is \textit{irreducible}.

(c) \(f_3(x) = 100x^3 - x + 2008 \)

\textit{Solution.} Reducing modulo 3, we get \(\bar{f}_3(x) = x^3 + 2x + 2 \). If this polynomial is reducible in \(\mathbb{F}_3[x] \), it must have a root. But \(\bar{f}_3(0) = \bar{f}_3(1) = \bar{f}_3(2) = 2 \). Hence it has no roots and \(\bar{f}_3 \) is irreducible in \(\mathbb{F}_3[x] \). Therefore \(f_3 \) is \textit{irreducible} in \(\mathbb{Q}[x] \).

(d) \(f_4(x) = x^4 + x^3 + x^2 + x + 1 \)

\textit{Solution.} This is \(\phi_5 \), the \textit{cyclotomic polynomial} for the prime 5. Hence, it is \textit{irreducible}. [You can prove it by applying the Eisenstein’s Criterion to \(f_4(x + 1) \) with \(p = 5 \).]
3) Let F be a field. We say that $\alpha \in F$ is a multiple root of $f(x) \in F[x]$ if $f(x) = (x - \alpha)^2 \cdot g(x)$, for some $g \in F[x]$.

(a) Prove that if α is a multiple root of f, then $f(\alpha) = f'(\alpha) = 0$, where $f'(x)$ is the derivative of $f(x)$ [as in calculus]. [Note that all calculus formulas for derivatives hold for polynomials.]

Proof. Since α is a multiple root of f, write $f(x) = (x - \alpha)^2 g(x)$. We then have:

$$f'(x) = \frac{d}{dx} (x - \alpha)^2 g(x) = 2(x - \alpha)g(x) + (x - \alpha)^2 g'(x).$$

Hence $f'(\alpha) = 2(\alpha - \alpha)g(\alpha) + (\alpha - \alpha)^2 g(\alpha) = 0$.

(b) Prove that if $f(x) \in F[x]$ is irreducible, then $f(x)$ has no multiple roots in any extension of F, as long as $f'(x) \neq 0$. [Hint: What’s the greatest common divisor of $f(x)$ and $f'(x)$?]

Proof. Since $f(x)$ is irreducible, we have that if $g(x)$ divides $f(x)$, then g is a [non-zero] constant or it is associated to f.

Let then g be a common divisor of f and f'. If g is an associate of f, it has the same degree as f, and so g cannot divide f', since $\deg f' < \deg f = \deg g$ and $f'(x) \neq 0$. [If we have that $f' = g \cdot q$, then $\deg f' = \deg g + \deg q$. So, if $f' \neq 0$, then $\deg g \leq \deg f'$, which is a contradiction. But notice that if $f' = 0$, then $f' = 0 \cdot g$, and so $g | f'$]

So, since g cannot be an associate of f, it has to be a constant [i.e., a unit] and $\gcd(f, f') = 1$.

So, by Bezout’s Theorem, there are $r, s \in F[x]$ such that

$$r(x)f(x) + s(x)f'(x) = 1.$$

If α is a multiple root of $f(x)$, by (a) it is also a root of $f'(x)$. Then, plugging $x = \alpha$ in the equation above would give us $0 = 1$, a contradiction. Hence, f has no multiple roots.

[Note: Let $f \overset{\text{def}}{=} x^2 + t^2 \in \mathbb{F}_2(t^2)[x]$. Then, f has no roots in $\mathbb{F}_2(t^2)$, since $f = (x + t)^2$ [we are in characteristic 2], and so the only root is $t \notin \mathbb{F}_2(t^2)$. Since f has degree 2 and no roots in $\mathbb{F}_2(t^2)$, it is irreducible in $\mathbb{F}_2(t^2)[x]$.

But, in the extension $\mathbb{F}_2(t)$, f does have multiple roots, namely, t is a double root. But, as you can expect from the statement, we have $f' = 2x = 0$.]
4) Let R be a UFD and let P be a non-zero *prime* ideal of R such that if P' is another prime ideal, with $(0) \subseteq P' \subseteq P$, then $P' = P$. Prove that P is principal.

Proof. Since $P \neq (0)$, there is $a \in P$, with $a \neq 0$. If a is a unit, then $P = R$, and P would not be prime. [$R = (1)$ is not prime by definition.] Since R is a UFD, we can write $a = p_1 \cdots p_k$, where the p_i are primes [and irreducible]. Since P is a prime ideal, and $a = p_1 \cdots p_k \in P$, we have $p_i \in P$ for some $i \in \{1, \ldots, k\}$.

So, $(0) \subseteq (p_i) \subseteq P$. Since p_i is prime, the ideal (p_i) is also prime. [We have seen that in class, but it is easy to see: $ab \in (p_i)$ iff $p_i \mid ab$ iff $p_i \mid a$ or $p_i \mid b$ [definition of prime element] iff $a \in (p_i)$ or $b \in (p_i)$.]

Hence, by hypothesis, $(p_i) = P$, and P is principal.

\[\square\]
5) Maximal ideals of polynomial rings with complex coefficients.

(a) Prove that if \(I \) is an ideal of \(\mathbb{C}[x, y] \) and \(M \) is a maximal ideal containing \(I \), then there is a point \((a, b)\) such that for all \(f(x, y) \in I \), we have \(f(a, b) = 0 \).

[Observation: This statement is also true for \(n \) variables (with an analogous solution).]

Proof. By the Nullstellensatz, \(M = (x - a, y - b) \) for some \(a, b \in \mathbb{C} \). Since \(I \subseteq M \), for all \(f \in I \), there are \(f_1, f_2 \in \mathbb{C}[x, y] \) such that

\[
 f(x, y) = (x - a)f_1(x, y) + (y - b)f_2(x, y).
\]

But then, \(f(a, b) = 0 \).

(b) Let \(I = (3x - y - 2, y - x^2) \) be an ideal of \(\mathbb{C}[x, y] \). Find all maximal ideals of \(\mathbb{C}[x, y] \) that contain \(I \).

Solution. By (a), if \(I \subseteq M = (x - a, y - b) \), then every polynomial in \(I \) must vanish at \((a, b)\), in particular, \((a, b)\) must be a common zero of \(3x - y - 2 \) and \(y - x^2 \). So, we just need to solve the system:

\[
\begin{align*}
 3x - y - 2 &= 0 \\
 y - x^2 &= 0
\end{align*}
\]

Solving we find only two points: \((1, 1)\) and \((2, 4)\).

So, there are only two possible maximal ideals that *might* contain \(I \): \((x - 1, y - 1)\) and \((x - 2, y - 4)\). Now, if \(f(x, y) \in I \), we have that

\[
 f(x, y) = (3x - y - 2)f_1(x, y) + (y - x^2)f_2(x, y),
\]

and thus \(f(1, 1) = f(2, 4) = 0 \). Hence, indeed \(I \) is indeed contained in those maximal ideals. [Remember that \(f(x, y) \in (x - x_0, y - y_0) \) iff \(f(x_0, y_0) = 0 \). We used Taylor expansions around \((x_0, y_0)\) to prove that.]