Here is the definition of internal direct product from the text:

Definition 1. Let $H_i \triangleleft G$ for $i \in \{1, \ldots, n\}$. [Note that we require that H_i is normal!] Then G is the internal direct product of the H_i’s if for any $g \in G$, $\exists! h_i \in H_i$ such that $g = h_1 \cdot h_2 \cdots h_n$.

Here is the properties I gave to decide if a group is isomorphic to the (external) direct product of a finite number of its subgroups:

Definition 2. Let $H_i \leq G$ for $i \in \{1, \ldots, n\}$. Then the sets H_i satisfy the IDP properties if:

1. $H_i \triangleleft G$, for all i;
2. $G = H_1 \cdots H_n \overset{\text{def}}{=} \{h_1 \cdots h_n : h_i \in H_i\}$;
3. if $\hat{H}_i \overset{\text{def}}{=} H_1 \cdots H_{i-1} \cdot H_{i+1} \cdots H_n$, then $H_i \cap \hat{H}_i = \{1\}$. [Note that if $n = 2$, then $\hat{H}_1 = H_2$ and $\hat{H}_2 = H_1$.]

We will prove that the definitions are equivalent, i.e., G is the internal direct product of the H_i’s if and only if the H_i’s satisfy the IDP properties. [This is Theorem 5 below.]

We need the following lemma.

Lemma 3. If $H_i \leq G$ for $i \in \{1, \ldots, n\}$ satisfy IDP properties, then $h_i h_j = h_j h_i$ for all $h_i \in H_i$ and $h_j \in H_j$ with $i \neq j$.

Proof. Since $h_i^{-1} \in H_i \triangleleft G$, we have that $h_j h_i^{-1} h_j^{-1} \in H_i$. So, $h_i(h_j h_i^{-1} h_j^{-1}) \in H_i$.

Similarly, since $h_j \in H_j \triangleleft G$, we have that $h_i h_j h_i^{-1} \in H_j$. So, $(h_i h_j h_i^{-1}) h_j^{-1} \in H_j$.

Thus, we have that $h_i h_j h_i^{-1} h_j^{-1} \in H_i \cap H_j$. But since $i \neq j$, we have that $H_j \subseteq \hat{H}_i$, and so $H_i \cap H_j \subseteq H_i \cap \hat{H}_i$. Moreover, by property (3), we have that $H_i \cap \hat{H}_i = \{1\}$. Hence, $h_i h_j h_i^{-1} h_j^{-1} \in H_i \cap H_j \subseteq H_i \cap \hat{H}_i = \{1\}$, which implies that $h_i h_j h_i^{-1} h_j^{-1} = 1$, i.e., $h_i h_j = h_j h_i$. \(\square\)
We then have:

Theorem 4. Let $H_1, \ldots, H_n \leq G$. Then, $\phi : H_1 \times \cdots \times H_n \to G$ defined by $\phi(h_1, \ldots, h_n) = h_1 \cdots h_n$ is an isomorphism if and only if the H_i’s satisfy the IDP properties.

Proof. \Rightarrow: Assume that ϕ [as in the statement] is an isomorphism. Let $G = H_1 \times \cdots \times H_n$ and $\tilde{H}_i \defeq \{1\} \times \cdots \{1\} \times \{1\} \times \cdots \times \{1\} \leq \tilde{G}$ [with H_i in the i-th coordinate]. Then, clearly $\phi(\tilde{H}_i) = H_i$. Since $\tilde{H}_i \triangleleft \tilde{G}$ [easy exercise!], we have that $H_i \triangleleft G$, as ϕ is an isomorphism [by assumption]. [This was a problem in the exam.] Thus, IDP property (1) is proved.

Since ϕ is an isomorphism [and hence onto] and $\phi(\tilde{G}) = H_1 \cdots H_n$ [by definition of ϕ and the product of groups], we have that $G = H_1 \cdots H_n$, proving property (2).

Now, let $\hat{H}_i \defeq H_1 \times \cdots \times H_{i-1} \times \{1\} \times H_{i+1} \times \cdots \times H_n$. Then, clearly $\phi(\hat{H}_i) = \hat{H}_i$ [with \hat{H}_i as in Definition 2] and $\hat{H}_i \cap \hat{H}_i = \{(1, \ldots, 1)\}$. Thus,

\[
\{1\} = \phi(\{(1, \ldots, 1)\})
\]

\[
= \phi(\hat{H}_i \cap \hat{H}_i) \quad \text{[as noted above]}
\]

\[
= \phi(\hat{H}_i) \cap \phi(\hat{H}_i) \quad \text{[as ϕ is a bijection – this is a Math 300 exercise]}
\]

\[
= H_i \cap \hat{H}_i \quad \text{[as noted above]}
\]

Hence, property (3) is also satisfied.

\Leftarrow: Assume now that the H_i’s satisfy the IDP property. Then, ϕ is a homomorphism by Lemma 3. It is onto by property (2) [as $\phi(H_1 \times \cdots \times H_n) = H_1 \cdots H_n$ by definition of ϕ].

Now we show that ϕ is injective. Suppose that $\phi(h_1, \ldots, h_n) = 1$. This means that $h_1 \cdots h_n = 1$, or $h_1^{-1} = h_2 \cdots h_n$. Since the left hand side is in H_1 and the right hand side is in \hat{H}_1, property (3) tells us that $h_1 = 1$ and $h_2 \cdots h_n = 1$. Then, $h_2^{-1} = h_3 \cdots h_n$ and now the left hand side is in H_2 and the right hand side is in \hat{H}_2. As before, we obtain $h_2 = 1$ and $h_3 \cdots h_n = 1$. Inductively, we obtain that $h_i = 1$ for all i. Hence, $\ker \phi = \{(1, \ldots, 1)\}$ and ϕ is injective. \qed
Now, we can prove that equivalency of the Definitions 1 and 2:

Theorem 5. Let $H_i \triangleleft G$ for $i \in \{1, \ldots, n\}$. [Note that we are already assuming that the H_i’s are normal, since it is in the conditions of both definitions!] We have that G is the internal direct product of the H_i if and only if the H_i’s satisfy the IDP properties.

Proof. [\Rightarrow:] Assume that G is the internal direct product of the H_i’s. Clearly properties (1) and (2) of IDP are satisfied.

Now, let $h_i \in H_i \cap \hat{H}_i$. Then, since $h_i \in \hat{H}_i$, we have, by definition, that

$$1 \cdots 1 \cdot h_i \cdot 1 \cdots 1 = h_i = x_1 \cdots x_{i-1} \cdot 1 \cdot x_{i+1} \cdots x_n,$$

where $x_j \in H_j$. By the unique representation hypothesis, we have that $h_i = 1$. Thus $H_i \cap \hat{H}_i = \{1\}$, i.e., property (3) is also satisfied.

[\Leftarrow:] Assume now that the H_i’s satisfy the IDP properties. [By (1), we would then get that the H_i’s are normal, but we are already assuming it here.] Then, by (2), every element $g \in G$ can be written as $g = h_1 \cdots h_n$ with $h_i \in H_i$. [We need to show uniqueness.]

Now assume that

$$h_1 \cdots h_n = x_1 \cdots x_n,$$

with $h_i, x_i \in H_i$.

Thus, with ϕ as in the statement of Theorem 4 [which we can use since are assuming IDP properties], we have that

$$\phi(h_1, \ldots, h_n) = \phi(x_1, \ldots, x_n).$$

Since ϕ is an isomorphism [and hence one-to-one], we have that $h_i = x_i$ for all i, and hence the representation is unique. \hfill \square

This gives us:

Corollary 6. G is the internal direct product of the subgroups H_i’s for $i \in \{1, \ldots, n\}$ [and hence $H_i \triangleleft G$ by assumption!] if and only if $\phi : H_1 \times \cdots \times H_n \to G$ defined by $\phi(h_1, \ldots, h_n) = h_1 \cdots h_n$ is an isomorphism.
Proof. By Theorem 4, we know that that H_i's satisfying IDP is equivalent to ϕ [as in the statement] being an isomorphism. Since the former is equivalent to G being the internal direct product of the subgroups H_i's [by Theorem 5], the result follows. \square