1) [20 points] Mark true or false. Justify your answers only for the ones which are false. [No need to justify if true.]

(a) \(P = \{\{1, 2, 3, 4, 5\}\} \) is a partition of \(\{1, 2, 3, 4, 5\} \).

\textbf{Answer:} T.

(b) \(P = \{\{1\}, \{2, 5\}, \{3, 4\}\} \) is a partition of \(\{1, 2, 3, 4, 5, 6\} \).

\textbf{Answer:} F, as 6 is not in any of the sets in the partition.

(c) Let \(X \) be the set of all people in the world, and define the relation \(R \) by \(xRy \) if \(x \) is married to \(y \). Then, \(R \) is an equivalence relation.

\textbf{Answer:} F, as a person who is married is not married to herself/himself.

(d) Let \(X \) be the set of all people in the world, and define the relation \(R \) by \(xRy \) if \(x \) and \(y \) have the same mother. Then, \(R \) is an equivalence relation.

\textbf{Answer:} T.

(e) The converse of an “if-then” statement is logically equivalent to the original statement [i.e., either both are false or both are true].

\textbf{Answer:} F, for example “if \(x = 1 \), then \(x > 0 \)” is true, but the converse “if \(x > 0 \), then \(x = 1 \)” is false.
2) [20 points] Give the completely simplified negation of the following statement. [Your answers should have no “nots” in them.]

For all $\epsilon > 0$, there is $\delta > 0$ such that either $|x| \geq \delta$ or $|x^2| < \epsilon$.

[Hint: Negate one part at a time, as it makes it easier to get partial credit.]

Solution.

$\neg (\text{For all } \epsilon > 0, \text{ there is } \delta > 0 \text{ such that either } |x| \geq \delta \text{ or } |x^2| < \epsilon.) \sim$

There exists $\epsilon > 0$ such that $\neg (\text{there is } \delta > 0 \text{ such that either } |x| \geq \delta \text{ or } |x^2| < \epsilon.) \sim$

There exists $\epsilon > 0$ such that for all $\delta > 0$, $\neg (\text{either } |x| \geq \delta \text{ or } |x^2| < \epsilon.) \sim$

There exists $\epsilon > 0$ such that for all $\delta > 0$, $|x| < \delta$ and $|x^2| \geq \epsilon$.

3) [20 points] Prove that if A and B are symmetric subsets of \mathbb{R}, then so is $A \cap B$.

Proof. As seen in class, a set X is symmetric if, and only if, for all $x \in X$, we have that $-x \in X$.

So, let $x \in A \cap B$. Then, by definition of intersection, $x \in A$ and $x \in B$. Since A and B are symmetric, we have that $-x \in A$ and $-x \in B$. Hence, by definition of intersection again, we have that $-x \in A \cap B$. Thus, $A \cap B$ is symmetric.

4) [20 points] Let \mathcal{R} be the relation on \mathbb{R}^2 given by $(x_1, y_1) \mathcal{R} (x_2, y_2)$ if there exists $r \in \mathbb{R}$ such that $(x_2, y_2) = (x_1 + r, y_1 + r)$.

[So, be careful here! You will use ordered pairs for elements! I.e., use “assume $(x_1, y_1) \mathcal{R} (x_2, y_2)$” instead of “assume $x \mathcal{R} y$” in your proofs.]

(a) Prove that \mathcal{R} is an equivalence relation.

Proof. [Reflexive:] Given $(x, y) \in \mathbb{R}^2$, we have that $(x, y) = (x + 0, y + 0)$, and hence $(x, y) \mathcal{R} (x, y)$ [since $0 \in \mathbb{R}$].

[Symmetric:] Suppose that $(x_1, y_1) \mathcal{R} (x_2, y_2)$. Then, there is $r \in \mathbb{R}$ such that $(x_2, y_2) = (x_1 + r, y_1 + r)$. Thus, $(x_1, y_1) = (x_2 - r, y_2 - r)$. Since $-r \in \mathbb{R}$ [as $-1 \in \mathbb{R}$ and \mathbb{R} is closed under multiplication], we have that $(x_2, y_2) \mathcal{R} (x_1, y_1)$.

[Transitive:] Suppose that $(x_1, y_1) \mathcal{R} (x_2, y_2)$ and $(x_2, y_2) \mathcal{R} (x_3, y_3)$. Then, by definition, there are $r, s \in \mathbb{R}$ such that $(x_2, y_2) = (x_1 + r, y_1 + r)$ and $(x_3, y_3) = (x_2 + s, y_2 + s)$. Hence, $(x_3, y_3) = (x_1 + (r + s), y_1 + (r + s))$, and since $r, s \in \mathbb{R}$ and \mathbb{R} is closed under addition, we have that $(x_1, y_1) \mathcal{R} (x_3, y_3)$.

(b) Give the equivalence class of $(0, 0)$.

Solution. We have:

$$\overline{(0, 0)} = \{(x, y) \in \mathbb{R}^2 : (0, 0) \mathcal{R} (x, y)\}$$

$$= \{(x, y) \in \mathbb{R}^2 : \exists r \in \mathbb{R} \text{ such that } (x, y) = (0 + r, 0 + r)\}$$

$$= \{(r, r) : r \in \mathbb{R}\}.$$

Hence, $\overline{(0, 0)}$ is the line $y = x$.

\[\square \]
5) [20 points]

(a) Prove that $x \not\in A \setminus C$ can be interpreted as saying that $x \not\in A$ or $x \in C$. [You need to give a formal proof! Wordy arguments will receive partial credit at best. **Hint:** Remember how to negate “and/or” statements.]

Proof. Observe that to say that $x \not\in A \setminus C$, is to negate $x \in A \setminus C$, i.e., to negate $(x \in A \text{ and } x \not\in C)$, which means that $x \not\in A$ or $x \in C$ by De Morgan’s Law.

[One can also use the contrapositive to prove this.]

(b) Let A, B and C be sets. Prove that $(B \cap C) \cup (B \setminus A) = B \setminus (A \setminus C)$. [**Hint:** Use item (a). Note that you can use it even if you did not do that part!]

Proof. [\subseteq:] Let $x \in (B \cap C) \cup (B \setminus A)$. Then, by definition of union, $x \in (B \cap C)$ or $x \in B \setminus A$. Then, by definition of intersection and complement, we have that $(x \in B \text{ and } x \in C)$ or $(x \in B \text{ and } x \not\in A)$.

Thus, we have that $x \in B$ and (either $x \in C$ or $x \not\in A$). Therefore, $x \in B$ and $x \not\in A \setminus C$ [from part (a)]. By definition of complement, $x \in B \setminus (A \setminus C)$.

[\supseteq:] Let $x \in B \setminus (A \setminus C)$. Then, $x \in B$ and $x \not\in A \setminus C$. This then means that $x \in B$ and (either $x \not\in A$ or $x \in C$) by part (a). So, either $(x \in B \text{ and } x \not\in A)$ or $(x \in B \text{ and } x \in C)$. Thus, $x \in B \setminus A$ or $x \in B \cap C$. Therefore, $x \in (B \cap C) \cup (B \setminus A)$.